File size: 12,251 Bytes
b1bbf8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from dataclasses import dataclass
from typing import Dict, List

import torch
from PIL.Image import Image
from transformers import LlamaTokenizerFast
from transformers.processing_utils import ProcessorMixin

from deepseek_vl.models.image_processing_vlm import VLMImageProcessor
from deepseek_vl.utils.conversation import get_conv_template


class DictOutput(object):
    def keys(self):
        return self.__dict__.keys()

    def __getitem__(self, item):
        return self.__dict__[item]

    def __setitem__(self, key, value):
        self.__dict__[key] = value


@dataclass
class VLChatProcessorOutput(DictOutput):
    sft_format: str
    input_ids: torch.Tensor
    pixel_values: torch.Tensor
    num_image_tokens: torch.IntTensor

    def __len__(self):
        return len(self.input_ids)


@dataclass
class BatchedVLChatProcessorOutput(DictOutput):
    sft_format: List[str]
    input_ids: torch.Tensor
    pixel_values: torch.Tensor
    attention_mask: torch.Tensor
    images_seq_mask: torch.BoolTensor
    images_emb_mask: torch.BoolTensor

    def to(self, device, dtype=torch.bfloat16):
        self.input_ids = self.input_ids.to(device)
        self.attention_mask = self.attention_mask.to(device)
        self.images_seq_mask = self.images_seq_mask.to(device)
        self.images_emb_mask = self.images_emb_mask.to(device)
        self.pixel_values = self.pixel_values.to(device=device, dtype=dtype)
        return self


class VLChatProcessor(ProcessorMixin):
    image_processor_class = "AutoImageProcessor"
    tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")

    attributes = ["image_processor", "tokenizer"]

    system_prompt = (
        "You are a helpful language and vision assistant. "
        "You are able to understand the visual content that the user provides, "
        "and assist the user with a variety of tasks using natural language."
    )

    def __init__(
        self,
        image_processor: VLMImageProcessor,
        tokenizer: LlamaTokenizerFast,
        image_tag: str = "<image_placeholder>",
        num_image_tokens: int = 576,
        add_special_token: bool = False,
        sft_format: str = "deepseek",
        mask_prompt: bool = True,
        ignore_id: int = -100,
        system="You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
        **kwargs,
    ):
        self.system_prompt = system
        self.image_processor = image_processor
        self.tokenizer = tokenizer

        image_id = self.tokenizer.vocab.get(image_tag)
        if image_id is None:
            special_tokens = [image_tag]
            special_tokens_dict = {"additional_special_tokens": special_tokens}
            self.tokenizer.add_special_tokens(special_tokens_dict)
            print(f"Add image tag = {image_tag} to the tokenizer")

        self.image_tag = image_tag
        self.num_image_tokens = num_image_tokens
        self.add_special_token = add_special_token
        self.sft_format = sft_format
        self.mask_prompt = mask_prompt
        self.ignore_id = ignore_id

        super().__init__(
            image_processor,
            tokenizer,
            image_tag,
            num_image_tokens,
            add_special_token,
            sft_format,
            mask_prompt,
            ignore_id,
            **kwargs,
        )

    def new_chat_template(self):
        conv = get_conv_template(self.sft_format)
        conv.set_system_message(self.system_prompt)
        return conv

    def apply_sft_template_for_multi_turn_prompts(
        self,
        conversations: List[Dict[str, str]],
        sft_format: str = "deepseek",
        system_prompt: str = "",
    ):
        """
        Applies the SFT template to conversation.

        An example of conversation:
        conversation = [
            {
                "role": "User",
                "content": "<image_placeholder> is Figure 1.\n<image_placeholder> is Figure 2.\nWhich image is brighter?",
                "images": [
                    "./multi-images/attribute_comparison_1.png",
                    "./multi-images/attribute_comparison_2.png"
                ]
            },
            {
                "role": "Assistant",
                "content": ""
            }
        ]

        Args:
            conversations (List[Dict]): A conversation with a List of Dict[str, str] text.
            sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
            system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".

        Returns:
            sft_prompt (str): The formatted text.
        """

        conv = get_conv_template(sft_format)
        conv.set_system_message(system_prompt)
        for message in conversations:
            conv.append_message(message["role"], message["content"].strip())
        sft_prompt = conv.get_prompt().strip()

        return sft_prompt

    @property
    def image_token(self):
        return self.image_tag

    @property
    def image_id(self):
        image_id = self.tokenizer.vocab.get(self.image_tag)
        return image_id

    @property
    def pad_id(self):
        pad_id = self.tokenizer.pad_token_id
        if pad_id is None:
            pad_id = self.tokenizer.eos_token_id

        return pad_id

    def add_image_token(
        self,
        image_indices: List[int],
        input_ids: torch.LongTensor,
    ):
        """

        Args:
            image_indices (List[int]): [index_0, index_1, ..., index_j]
            input_ids (torch.LongTensor): [N]

        Returns:
            input_ids (torch.LongTensor): [N + image tokens]
            num_image_tokens (torch.IntTensor): [n_images]
        """

        input_slices = []

        start = 0
        for index in image_indices:
            if self.add_special_token:
                end = index + 1
            else:
                end = index

            # original text tokens
            input_slices.append(input_ids[start:end])

            # add image tokens, and set the mask as False
            input_slices.append(
                self.image_id * torch.ones((self.num_image_tokens,), dtype=torch.long)
            )
            start = index + 1

        # the left part
        input_slices.append(input_ids[start:])

        # concat all slices
        input_ids = torch.cat(input_slices, dim=0)
        num_image_tokens = torch.IntTensor([self.num_image_tokens] * len(image_indices))

        return input_ids, num_image_tokens

    def process_one(
        self,
        prompt: str = None,
        conversations: List[Dict[str, str]] = None,
        images: List[Image] = None,
        **kwargs,
    ):
        """

        Args:
            prompt (str): the formatted prompt;
            conversations (List[Dict]): conversations with a list of messages;
            images (List[ImageType]): the list of images;
            **kwargs:

        Returns:
            outputs (BaseProcessorOutput): the output of the processor,
                - input_ids (torch.LongTensor): [N + image tokens]
                - target_ids (torch.LongTensor): [N + image tokens]
                - images (torch.FloatTensor): [n_images, 3, H, W]
                - image_id (int): the id of the image token
                - num_image_tokens (List[int]): the number of image tokens
        """

        assert (
            prompt is None or conversations is None
        ), "prompt and conversations cannot be used at the same time."

        if prompt is None:
            # apply sft format
            sft_format = self.apply_sft_template_for_multi_turn_prompts(
                conversations=conversations,
                sft_format=self.sft_format,
                system_prompt=self.system_prompt,
            )
        else:
            sft_format = prompt

        # tokenize
        input_ids = self.tokenizer.encode(sft_format)
        input_ids = torch.LongTensor(input_ids)

        # add image tokens to the input_ids
        image_token_mask: torch.BoolTensor = input_ids == self.image_id
        image_indices = image_token_mask.nonzero()
        input_ids, num_image_tokens = self.add_image_token(
            image_indices=image_indices,
            input_ids=input_ids,
        )

        # load images
        images_outputs = self.image_processor(images, return_tensors="pt")

        prepare = VLChatProcessorOutput(
            sft_format=sft_format,
            input_ids=input_ids,
            pixel_values=images_outputs.pixel_values,
            num_image_tokens=num_image_tokens,
        )

        return prepare

    def __call__(
        self,
        *,
        prompt: str = None,
        conversations: List[Dict[str, str]] = None,
        images: List[Image] = None,
        force_batchify: bool = True,
        **kwargs,
    ):
        """

        Args:
            prompt (str): the formatted prompt;
            conversations (List[Dict]): conversations with a list of messages;
            images (List[ImageType]): the list of images;
            force_batchify (bool): force batchify the inputs;
            **kwargs:

        Returns:
            outputs (BaseProcessorOutput): the output of the processor,
                - input_ids (torch.LongTensor): [N + image tokens]
                - images (torch.FloatTensor): [n_images, 3, H, W]
                - image_id (int): the id of the image token
                - num_image_tokens (List[int]): the number of image tokens
        """

        prepare = self.process_one(
            prompt=prompt, conversations=conversations, images=images
        )

        if force_batchify:
            prepare = self.batchify([prepare])

        return prepare

    def batchify(
        self, prepare_list: List[VLChatProcessorOutput]
    ) -> BatchedVLChatProcessorOutput:
        """
        Preprocesses the inputs for multimodal inference.

        Args:
            prepare_list (List[VLChatProcessorOutput]): A list of VLChatProcessorOutput.

        Returns:
            BatchedVLChatProcessorOutput: A dictionary of the inputs to use for multimodal inference.
        """

        batch_size = len(prepare_list)
        sft_format = []
        n_images = []
        seq_lens = []
        for prepare in prepare_list:
            n_images.append(len(prepare.num_image_tokens))
            seq_lens.append(len(prepare))

        input_token_max_len = max(seq_lens)
        max_n_images = max(1, max(n_images))

        batched_input_ids = torch.full(
            (batch_size, input_token_max_len), self.pad_id
        ).long()  # FIXME
        batched_attention_mask = torch.zeros((batch_size, input_token_max_len)).long()
        batched_pixel_values = torch.zeros(
            (batch_size, max_n_images, *self.image_processor.default_shape)
        ).float()
        batched_images_seq_mask = torch.zeros((batch_size, input_token_max_len)).bool()
        batched_images_emb_mask = torch.zeros(
            (batch_size, max_n_images, self.num_image_tokens)
        ).bool()

        for i, prepare in enumerate(prepare_list):
            input_ids = prepare.input_ids
            seq_len = len(prepare)
            n_image = len(prepare.num_image_tokens)
            # left-padding
            batched_attention_mask[i, -seq_len:] = 1
            batched_input_ids[i, -seq_len:] = torch.LongTensor(input_ids)
            batched_images_seq_mask[i, -seq_len:] = input_ids == self.image_id

            if n_image > 0:
                batched_pixel_values[i, :n_image] = prepare.pixel_values
                for j, n_image_tokens in enumerate(prepare.num_image_tokens):
                    batched_images_emb_mask[i, j, :n_image_tokens] = True

            sft_format.append(prepare.sft_format)

        batched_prepares = BatchedVLChatProcessorOutput(
            input_ids=batched_input_ids,
            attention_mask=batched_attention_mask,
            pixel_values=batched_pixel_values,
            images_seq_mask=batched_images_seq_mask,
            images_emb_mask=batched_images_emb_mask,
            sft_format=sft_format,
        )

        return batched_prepares