YL95 commited on
Commit
f0a9197
1 Parent(s): a46c242

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - autotrain
4
+ - text-generation
5
+ widget:
6
+ - text: "I love AutoTrain because "
7
+ ---
8
+
9
+ # Model Trained Using AutoTrain
adapter_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bn22/Mistral-7B-Instruct-v0.1-sharded",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "v_proj",
20
+ "q_proj"
21
+ ],
22
+ "task_type": "CAUSAL_LM"
23
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78a73c178728716cde57fcbda318c2d03a327bf9e71a55cb858852f99db4556d
3
+ size 27308941
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "</s>": 2,
3
+ "<s>": 1,
4
+ "<unk>": 0
5
+ }
checkpoint-10626/README.md ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: bn22/Mistral-7B-Instruct-v0.1-sharded
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: False
214
+ - bnb_4bit_compute_dtype: float16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
220
+ ## Training procedure
221
+
222
+
223
+ The following `bitsandbytes` quantization config was used during training:
224
+ - quant_method: bitsandbytes
225
+ - load_in_8bit: False
226
+ - load_in_4bit: True
227
+ - llm_int8_threshold: 6.0
228
+ - llm_int8_skip_modules: None
229
+ - llm_int8_enable_fp32_cpu_offload: False
230
+ - llm_int8_has_fp16_weight: False
231
+ - bnb_4bit_quant_type: nf4
232
+ - bnb_4bit_use_double_quant: False
233
+ - bnb_4bit_compute_dtype: float16
234
+
235
+ ### Framework versions
236
+
237
+
238
+ - PEFT 0.6.0.dev0
checkpoint-10626/adapter_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bn22/Mistral-7B-Instruct-v0.1-sharded",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "v_proj",
20
+ "q_proj"
21
+ ],
22
+ "task_type": "CAUSAL_LM"
23
+ }
checkpoint-10626/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78a73c178728716cde57fcbda318c2d03a327bf9e71a55cb858852f99db4556d
3
+ size 27308941
checkpoint-10626/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "</s>": 2,
3
+ "<s>": 1,
4
+ "<unk>": 0
5
+ }
checkpoint-10626/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:091b22b44e32cd03cc1cca82a065a3b612be6d633470160b30653f1a6249e6e5
3
+ size 54633541
checkpoint-10626/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b48ca88d434ec5de8a7bb21e33d3ececf9d821f591c714325b729fd32365a0fd
3
+ size 14575
checkpoint-10626/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e745bc9189c9914b456033c0e9a9898edfc9252b7bf3a479060f59c20ed7deb8
3
+ size 627
checkpoint-10626/special_tokens_map.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": "<s>",
8
+ "eos_token": "</s>",
9
+ "pad_token": "</s>",
10
+ "unk_token": "<unk>"
11
+ }
checkpoint-10626/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-10626/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-10626/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "additional_special_tokens": [
29
+ "<unk>",
30
+ "<s>",
31
+ "</s>"
32
+ ],
33
+ "bos_token": "<s>",
34
+ "clean_up_tokenization_spaces": false,
35
+ "eos_token": "</s>",
36
+ "legacy": true,
37
+ "model_max_length": 32768,
38
+ "pad_token": "</s>",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": true
44
+ }
checkpoint-10626/trainer_state.json ADDED
@@ -0,0 +1,1465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 76.61883408071749,
5
+ "eval_steps": 500,
6
+ "global_step": 10626,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.2,
13
+ "learning_rate": 2.561117578579744e-06,
14
+ "loss": 1.3932,
15
+ "step": 44
16
+ },
17
+ {
18
+ "epoch": 0.39,
19
+ "learning_rate": 5.122235157159488e-06,
20
+ "loss": 1.3231,
21
+ "step": 88
22
+ },
23
+ {
24
+ "epoch": 0.59,
25
+ "learning_rate": 7.683352735739232e-06,
26
+ "loss": 1.3235,
27
+ "step": 132
28
+ },
29
+ {
30
+ "epoch": 1.17,
31
+ "learning_rate": 1.0244470314318976e-05,
32
+ "loss": 1.2242,
33
+ "step": 176
34
+ },
35
+ {
36
+ "epoch": 1.37,
37
+ "learning_rate": 1.2805587892898722e-05,
38
+ "loss": 1.1413,
39
+ "step": 220
40
+ },
41
+ {
42
+ "epoch": 1.57,
43
+ "learning_rate": 1.5366705471478464e-05,
44
+ "loss": 1.0589,
45
+ "step": 264
46
+ },
47
+ {
48
+ "epoch": 2.14,
49
+ "learning_rate": 1.7927823050058208e-05,
50
+ "loss": 0.8778,
51
+ "step": 308
52
+ },
53
+ {
54
+ "epoch": 2.34,
55
+ "learning_rate": 2.0488940628637952e-05,
56
+ "loss": 0.9339,
57
+ "step": 352
58
+ },
59
+ {
60
+ "epoch": 2.54,
61
+ "learning_rate": 2.3050058207217696e-05,
62
+ "loss": 0.8231,
63
+ "step": 396
64
+ },
65
+ {
66
+ "epoch": 3.12,
67
+ "learning_rate": 2.5611175785797444e-05,
68
+ "loss": 0.7623,
69
+ "step": 440
70
+ },
71
+ {
72
+ "epoch": 3.31,
73
+ "learning_rate": 2.8172293364377184e-05,
74
+ "loss": 0.7676,
75
+ "step": 484
76
+ },
77
+ {
78
+ "epoch": 3.51,
79
+ "learning_rate": 3.073341094295693e-05,
80
+ "loss": 0.7446,
81
+ "step": 528
82
+ },
83
+ {
84
+ "epoch": 4.09,
85
+ "learning_rate": 3.329452852153667e-05,
86
+ "loss": 0.7007,
87
+ "step": 572
88
+ },
89
+ {
90
+ "epoch": 4.29,
91
+ "learning_rate": 3.5855646100116416e-05,
92
+ "loss": 0.6539,
93
+ "step": 616
94
+ },
95
+ {
96
+ "epoch": 4.48,
97
+ "learning_rate": 3.841676367869616e-05,
98
+ "loss": 0.6692,
99
+ "step": 660
100
+ },
101
+ {
102
+ "epoch": 5.06,
103
+ "learning_rate": 4.0977881257275904e-05,
104
+ "loss": 0.6142,
105
+ "step": 704
106
+ },
107
+ {
108
+ "epoch": 5.26,
109
+ "learning_rate": 4.353899883585565e-05,
110
+ "loss": 0.5731,
111
+ "step": 748
112
+ },
113
+ {
114
+ "epoch": 5.46,
115
+ "learning_rate": 4.60419091967404e-05,
116
+ "loss": 0.6002,
117
+ "step": 792
118
+ },
119
+ {
120
+ "epoch": 6.04,
121
+ "learning_rate": 4.860302677532014e-05,
122
+ "loss": 0.6326,
123
+ "step": 836
124
+ },
125
+ {
126
+ "epoch": 6.23,
127
+ "learning_rate": 5.116414435389989e-05,
128
+ "loss": 0.5305,
129
+ "step": 880
130
+ },
131
+ {
132
+ "epoch": 6.43,
133
+ "learning_rate": 5.372526193247963e-05,
134
+ "loss": 0.5346,
135
+ "step": 924
136
+ },
137
+ {
138
+ "epoch": 7.01,
139
+ "learning_rate": 5.6286379511059375e-05,
140
+ "loss": 0.5423,
141
+ "step": 968
142
+ },
143
+ {
144
+ "epoch": 7.21,
145
+ "learning_rate": 5.884749708963911e-05,
146
+ "loss": 0.4862,
147
+ "step": 1012
148
+ },
149
+ {
150
+ "epoch": 7.4,
151
+ "learning_rate": 6.140861466821886e-05,
152
+ "loss": 0.5019,
153
+ "step": 1056
154
+ },
155
+ {
156
+ "epoch": 7.6,
157
+ "learning_rate": 6.396973224679861e-05,
158
+ "loss": 0.4905,
159
+ "step": 1100
160
+ },
161
+ {
162
+ "epoch": 8.18,
163
+ "learning_rate": 6.653084982537835e-05,
164
+ "loss": 0.4358,
165
+ "step": 1144
166
+ },
167
+ {
168
+ "epoch": 8.38,
169
+ "learning_rate": 6.90919674039581e-05,
170
+ "loss": 0.4369,
171
+ "step": 1188
172
+ },
173
+ {
174
+ "epoch": 8.57,
175
+ "learning_rate": 7.165308498253784e-05,
176
+ "loss": 0.4566,
177
+ "step": 1232
178
+ },
179
+ {
180
+ "epoch": 9.15,
181
+ "learning_rate": 7.421420256111758e-05,
182
+ "loss": 0.4201,
183
+ "step": 1276
184
+ },
185
+ {
186
+ "epoch": 9.35,
187
+ "learning_rate": 7.677532013969733e-05,
188
+ "loss": 0.3598,
189
+ "step": 1320
190
+ },
191
+ {
192
+ "epoch": 9.55,
193
+ "learning_rate": 7.933643771827707e-05,
194
+ "loss": 0.4108,
195
+ "step": 1364
196
+ },
197
+ {
198
+ "epoch": 10.13,
199
+ "learning_rate": 8.189755529685681e-05,
200
+ "loss": 0.3463,
201
+ "step": 1408
202
+ },
203
+ {
204
+ "epoch": 10.32,
205
+ "learning_rate": 8.445867287543656e-05,
206
+ "loss": 0.3552,
207
+ "step": 1452
208
+ },
209
+ {
210
+ "epoch": 10.52,
211
+ "learning_rate": 8.70197904540163e-05,
212
+ "loss": 0.3687,
213
+ "step": 1496
214
+ },
215
+ {
216
+ "epoch": 11.1,
217
+ "learning_rate": 8.958090803259605e-05,
218
+ "loss": 0.3342,
219
+ "step": 1540
220
+ },
221
+ {
222
+ "epoch": 11.3,
223
+ "learning_rate": 9.214202561117579e-05,
224
+ "loss": 0.31,
225
+ "step": 1584
226
+ },
227
+ {
228
+ "epoch": 11.49,
229
+ "learning_rate": 9.470314318975554e-05,
230
+ "loss": 0.2917,
231
+ "step": 1628
232
+ },
233
+ {
234
+ "epoch": 12.07,
235
+ "learning_rate": 9.726426076833528e-05,
236
+ "loss": 0.3055,
237
+ "step": 1672
238
+ },
239
+ {
240
+ "epoch": 12.27,
241
+ "learning_rate": 9.982537834691502e-05,
242
+ "loss": 0.2541,
243
+ "step": 1716
244
+ },
245
+ {
246
+ "epoch": 12.47,
247
+ "learning_rate": 9.973467935028797e-05,
248
+ "loss": 0.277,
249
+ "step": 1760
250
+ },
251
+ {
252
+ "epoch": 13.04,
253
+ "learning_rate": 9.944994499449946e-05,
254
+ "loss": 0.2611,
255
+ "step": 1804
256
+ },
257
+ {
258
+ "epoch": 13.24,
259
+ "learning_rate": 9.916521063871093e-05,
260
+ "loss": 0.208,
261
+ "step": 1848
262
+ },
263
+ {
264
+ "epoch": 13.44,
265
+ "learning_rate": 9.888047628292242e-05,
266
+ "loss": 0.2238,
267
+ "step": 1892
268
+ },
269
+ {
270
+ "epoch": 14.02,
271
+ "learning_rate": 9.85957419271339e-05,
272
+ "loss": 0.2341,
273
+ "step": 1936
274
+ },
275
+ {
276
+ "epoch": 14.22,
277
+ "learning_rate": 9.831100757134537e-05,
278
+ "loss": 0.1703,
279
+ "step": 1980
280
+ },
281
+ {
282
+ "epoch": 14.41,
283
+ "learning_rate": 9.802627321555685e-05,
284
+ "loss": 0.2005,
285
+ "step": 2024
286
+ },
287
+ {
288
+ "epoch": 14.61,
289
+ "learning_rate": 9.774153885976833e-05,
290
+ "loss": 0.1763,
291
+ "step": 2068
292
+ },
293
+ {
294
+ "epoch": 15.19,
295
+ "learning_rate": 9.745680450397982e-05,
296
+ "loss": 0.1496,
297
+ "step": 2112
298
+ },
299
+ {
300
+ "epoch": 15.39,
301
+ "learning_rate": 9.71720701481913e-05,
302
+ "loss": 0.1414,
303
+ "step": 2156
304
+ },
305
+ {
306
+ "epoch": 15.58,
307
+ "learning_rate": 9.688733579240278e-05,
308
+ "loss": 0.1597,
309
+ "step": 2200
310
+ },
311
+ {
312
+ "epoch": 16.16,
313
+ "learning_rate": 9.660260143661426e-05,
314
+ "loss": 0.1234,
315
+ "step": 2244
316
+ },
317
+ {
318
+ "epoch": 16.36,
319
+ "learning_rate": 9.631786708082572e-05,
320
+ "loss": 0.1305,
321
+ "step": 2288
322
+ },
323
+ {
324
+ "epoch": 16.56,
325
+ "learning_rate": 9.603313272503721e-05,
326
+ "loss": 0.1265,
327
+ "step": 2332
328
+ },
329
+ {
330
+ "epoch": 17.13,
331
+ "learning_rate": 9.574839836924869e-05,
332
+ "loss": 0.1109,
333
+ "step": 2376
334
+ },
335
+ {
336
+ "epoch": 17.33,
337
+ "learning_rate": 9.546366401346017e-05,
338
+ "loss": 0.0975,
339
+ "step": 2420
340
+ },
341
+ {
342
+ "epoch": 17.53,
343
+ "learning_rate": 9.517892965767166e-05,
344
+ "loss": 0.1044,
345
+ "step": 2464
346
+ },
347
+ {
348
+ "epoch": 18.11,
349
+ "learning_rate": 9.489419530188314e-05,
350
+ "loss": 0.1009,
351
+ "step": 2508
352
+ },
353
+ {
354
+ "epoch": 18.3,
355
+ "learning_rate": 9.460946094609462e-05,
356
+ "loss": 0.0852,
357
+ "step": 2552
358
+ },
359
+ {
360
+ "epoch": 18.5,
361
+ "learning_rate": 9.432472659030608e-05,
362
+ "loss": 0.0989,
363
+ "step": 2596
364
+ },
365
+ {
366
+ "epoch": 19.08,
367
+ "learning_rate": 9.403999223451757e-05,
368
+ "loss": 0.0802,
369
+ "step": 2640
370
+ },
371
+ {
372
+ "epoch": 19.28,
373
+ "learning_rate": 9.375525787872906e-05,
374
+ "loss": 0.0675,
375
+ "step": 2684
376
+ },
377
+ {
378
+ "epoch": 19.48,
379
+ "learning_rate": 9.347052352294053e-05,
380
+ "loss": 0.0803,
381
+ "step": 2728
382
+ },
383
+ {
384
+ "epoch": 20.05,
385
+ "learning_rate": 9.318578916715202e-05,
386
+ "loss": 0.0766,
387
+ "step": 2772
388
+ },
389
+ {
390
+ "epoch": 20.25,
391
+ "learning_rate": 9.29010548113635e-05,
392
+ "loss": 0.0601,
393
+ "step": 2816
394
+ },
395
+ {
396
+ "epoch": 20.45,
397
+ "learning_rate": 9.261632045557498e-05,
398
+ "loss": 0.0699,
399
+ "step": 2860
400
+ },
401
+ {
402
+ "epoch": 21.03,
403
+ "learning_rate": 9.233158609978645e-05,
404
+ "loss": 0.0648,
405
+ "step": 2904
406
+ },
407
+ {
408
+ "epoch": 21.22,
409
+ "learning_rate": 9.204685174399793e-05,
410
+ "loss": 0.0517,
411
+ "step": 2948
412
+ },
413
+ {
414
+ "epoch": 21.42,
415
+ "learning_rate": 9.176211738820942e-05,
416
+ "loss": 0.0609,
417
+ "step": 2992
418
+ },
419
+ {
420
+ "epoch": 21.62,
421
+ "learning_rate": 9.147738303242089e-05,
422
+ "loss": 0.0569,
423
+ "step": 3036
424
+ },
425
+ {
426
+ "epoch": 22.2,
427
+ "learning_rate": 9.119264867663238e-05,
428
+ "loss": 0.0463,
429
+ "step": 3080
430
+ },
431
+ {
432
+ "epoch": 22.39,
433
+ "learning_rate": 9.090791432084385e-05,
434
+ "loss": 0.051,
435
+ "step": 3124
436
+ },
437
+ {
438
+ "epoch": 22.59,
439
+ "learning_rate": 9.062317996505534e-05,
440
+ "loss": 0.0512,
441
+ "step": 3168
442
+ },
443
+ {
444
+ "epoch": 23.17,
445
+ "learning_rate": 9.033844560926681e-05,
446
+ "loss": 0.0422,
447
+ "step": 3212
448
+ },
449
+ {
450
+ "epoch": 23.37,
451
+ "learning_rate": 9.005371125347829e-05,
452
+ "loss": 0.0415,
453
+ "step": 3256
454
+ },
455
+ {
456
+ "epoch": 23.57,
457
+ "learning_rate": 8.976897689768977e-05,
458
+ "loss": 0.0466,
459
+ "step": 3300
460
+ },
461
+ {
462
+ "epoch": 24.14,
463
+ "learning_rate": 8.948424254190125e-05,
464
+ "loss": 0.0401,
465
+ "step": 3344
466
+ },
467
+ {
468
+ "epoch": 24.34,
469
+ "learning_rate": 8.919950818611274e-05,
470
+ "loss": 0.0386,
471
+ "step": 3388
472
+ },
473
+ {
474
+ "epoch": 24.54,
475
+ "learning_rate": 8.891477383032421e-05,
476
+ "loss": 0.0394,
477
+ "step": 3432
478
+ },
479
+ {
480
+ "epoch": 25.12,
481
+ "learning_rate": 8.86300394745357e-05,
482
+ "loss": 0.0368,
483
+ "step": 3476
484
+ },
485
+ {
486
+ "epoch": 25.31,
487
+ "learning_rate": 8.834530511874717e-05,
488
+ "loss": 0.0357,
489
+ "step": 3520
490
+ },
491
+ {
492
+ "epoch": 25.51,
493
+ "learning_rate": 8.806057076295865e-05,
494
+ "loss": 0.0372,
495
+ "step": 3564
496
+ },
497
+ {
498
+ "epoch": 26.09,
499
+ "learning_rate": 8.777583640717013e-05,
500
+ "loss": 0.0314,
501
+ "step": 3608
502
+ },
503
+ {
504
+ "epoch": 26.29,
505
+ "learning_rate": 8.749110205138161e-05,
506
+ "loss": 0.032,
507
+ "step": 3652
508
+ },
509
+ {
510
+ "epoch": 26.48,
511
+ "learning_rate": 8.72063676955931e-05,
512
+ "loss": 0.0324,
513
+ "step": 3696
514
+ },
515
+ {
516
+ "epoch": 27.06,
517
+ "learning_rate": 8.692163333980458e-05,
518
+ "loss": 0.0309,
519
+ "step": 3740
520
+ },
521
+ {
522
+ "epoch": 27.26,
523
+ "learning_rate": 8.663689898401606e-05,
524
+ "loss": 0.0296,
525
+ "step": 3784
526
+ },
527
+ {
528
+ "epoch": 27.46,
529
+ "learning_rate": 8.635216462822753e-05,
530
+ "loss": 0.0311,
531
+ "step": 3828
532
+ },
533
+ {
534
+ "epoch": 28.04,
535
+ "learning_rate": 8.6067430272439e-05,
536
+ "loss": 0.0304,
537
+ "step": 3872
538
+ },
539
+ {
540
+ "epoch": 28.23,
541
+ "learning_rate": 8.578269591665049e-05,
542
+ "loss": 0.0249,
543
+ "step": 3916
544
+ },
545
+ {
546
+ "epoch": 28.43,
547
+ "learning_rate": 8.549796156086198e-05,
548
+ "loss": 0.0267,
549
+ "step": 3960
550
+ },
551
+ {
552
+ "epoch": 29.01,
553
+ "learning_rate": 8.521322720507345e-05,
554
+ "loss": 0.0299,
555
+ "step": 4004
556
+ },
557
+ {
558
+ "epoch": 29.21,
559
+ "learning_rate": 8.492849284928494e-05,
560
+ "loss": 0.0222,
561
+ "step": 4048
562
+ },
563
+ {
564
+ "epoch": 29.4,
565
+ "learning_rate": 8.464375849349641e-05,
566
+ "loss": 0.0266,
567
+ "step": 4092
568
+ },
569
+ {
570
+ "epoch": 29.6,
571
+ "learning_rate": 8.435902413770789e-05,
572
+ "loss": 0.0293,
573
+ "step": 4136
574
+ },
575
+ {
576
+ "epoch": 30.18,
577
+ "learning_rate": 8.407428978191936e-05,
578
+ "loss": 0.0203,
579
+ "step": 4180
580
+ },
581
+ {
582
+ "epoch": 30.38,
583
+ "learning_rate": 8.378955542613085e-05,
584
+ "loss": 0.0239,
585
+ "step": 4224
586
+ },
587
+ {
588
+ "epoch": 30.57,
589
+ "learning_rate": 8.350482107034234e-05,
590
+ "loss": 0.0263,
591
+ "step": 4268
592
+ },
593
+ {
594
+ "epoch": 31.15,
595
+ "learning_rate": 8.322008671455381e-05,
596
+ "loss": 0.0197,
597
+ "step": 4312
598
+ },
599
+ {
600
+ "epoch": 31.35,
601
+ "learning_rate": 8.29353523587653e-05,
602
+ "loss": 0.0221,
603
+ "step": 4356
604
+ },
605
+ {
606
+ "epoch": 31.55,
607
+ "learning_rate": 8.265061800297677e-05,
608
+ "loss": 0.0225,
609
+ "step": 4400
610
+ },
611
+ {
612
+ "epoch": 32.13,
613
+ "learning_rate": 8.236588364718825e-05,
614
+ "loss": 0.0201,
615
+ "step": 4444
616
+ },
617
+ {
618
+ "epoch": 32.32,
619
+ "learning_rate": 8.208114929139973e-05,
620
+ "loss": 0.0204,
621
+ "step": 4488
622
+ },
623
+ {
624
+ "epoch": 32.52,
625
+ "learning_rate": 8.179641493561121e-05,
626
+ "loss": 0.0213,
627
+ "step": 4532
628
+ },
629
+ {
630
+ "epoch": 33.1,
631
+ "learning_rate": 8.15116805798227e-05,
632
+ "loss": 0.0189,
633
+ "step": 4576
634
+ },
635
+ {
636
+ "epoch": 33.3,
637
+ "learning_rate": 8.122694622403417e-05,
638
+ "loss": 0.0197,
639
+ "step": 4620
640
+ },
641
+ {
642
+ "epoch": 33.49,
643
+ "learning_rate": 8.094221186824566e-05,
644
+ "loss": 0.0201,
645
+ "step": 4664
646
+ },
647
+ {
648
+ "epoch": 34.07,
649
+ "learning_rate": 8.065747751245713e-05,
650
+ "loss": 0.0204,
651
+ "step": 4708
652
+ },
653
+ {
654
+ "epoch": 34.27,
655
+ "learning_rate": 8.037921439202744e-05,
656
+ "loss": 0.0176,
657
+ "step": 4752
658
+ },
659
+ {
660
+ "epoch": 34.47,
661
+ "learning_rate": 8.009448003623892e-05,
662
+ "loss": 0.0206,
663
+ "step": 4796
664
+ },
665
+ {
666
+ "epoch": 35.04,
667
+ "learning_rate": 7.980974568045039e-05,
668
+ "loss": 0.0175,
669
+ "step": 4840
670
+ },
671
+ {
672
+ "epoch": 35.24,
673
+ "learning_rate": 7.952501132466188e-05,
674
+ "loss": 0.017,
675
+ "step": 4884
676
+ },
677
+ {
678
+ "epoch": 35.44,
679
+ "learning_rate": 7.924027696887337e-05,
680
+ "loss": 0.0185,
681
+ "step": 4928
682
+ },
683
+ {
684
+ "epoch": 36.02,
685
+ "learning_rate": 7.895554261308484e-05,
686
+ "loss": 0.0168,
687
+ "step": 4972
688
+ },
689
+ {
690
+ "epoch": 36.22,
691
+ "learning_rate": 7.867080825729633e-05,
692
+ "loss": 0.0161,
693
+ "step": 5016
694
+ },
695
+ {
696
+ "epoch": 36.41,
697
+ "learning_rate": 7.83860739015078e-05,
698
+ "loss": 0.0166,
699
+ "step": 5060
700
+ },
701
+ {
702
+ "epoch": 36.61,
703
+ "learning_rate": 7.810133954571928e-05,
704
+ "loss": 0.0178,
705
+ "step": 5104
706
+ },
707
+ {
708
+ "epoch": 37.19,
709
+ "learning_rate": 7.781660518993076e-05,
710
+ "loss": 0.0151,
711
+ "step": 5148
712
+ },
713
+ {
714
+ "epoch": 37.39,
715
+ "learning_rate": 7.753187083414224e-05,
716
+ "loss": 0.0152,
717
+ "step": 5192
718
+ },
719
+ {
720
+ "epoch": 37.58,
721
+ "learning_rate": 7.724713647835373e-05,
722
+ "loss": 0.0167,
723
+ "step": 5236
724
+ },
725
+ {
726
+ "epoch": 38.16,
727
+ "learning_rate": 7.69624021225652e-05,
728
+ "loss": 0.0133,
729
+ "step": 5280
730
+ },
731
+ {
732
+ "epoch": 38.36,
733
+ "learning_rate": 7.667766776677669e-05,
734
+ "loss": 0.0164,
735
+ "step": 5324
736
+ },
737
+ {
738
+ "epoch": 38.56,
739
+ "learning_rate": 7.639293341098816e-05,
740
+ "loss": 0.016,
741
+ "step": 5368
742
+ },
743
+ {
744
+ "epoch": 39.13,
745
+ "learning_rate": 7.610819905519963e-05,
746
+ "loss": 0.0144,
747
+ "step": 5412
748
+ },
749
+ {
750
+ "epoch": 39.33,
751
+ "learning_rate": 7.582346469941112e-05,
752
+ "loss": 0.0133,
753
+ "step": 5456
754
+ },
755
+ {
756
+ "epoch": 39.53,
757
+ "learning_rate": 7.55387303436226e-05,
758
+ "loss": 0.0156,
759
+ "step": 5500
760
+ },
761
+ {
762
+ "epoch": 40.11,
763
+ "learning_rate": 7.525399598783408e-05,
764
+ "loss": 0.0142,
765
+ "step": 5544
766
+ },
767
+ {
768
+ "epoch": 40.3,
769
+ "learning_rate": 7.496926163204556e-05,
770
+ "loss": 0.0143,
771
+ "step": 5588
772
+ },
773
+ {
774
+ "epoch": 40.5,
775
+ "learning_rate": 7.468452727625704e-05,
776
+ "loss": 0.0128,
777
+ "step": 5632
778
+ },
779
+ {
780
+ "epoch": 41.08,
781
+ "learning_rate": 7.439979292046852e-05,
782
+ "loss": 0.0135,
783
+ "step": 5676
784
+ },
785
+ {
786
+ "epoch": 41.28,
787
+ "learning_rate": 7.411505856467999e-05,
788
+ "loss": 0.011,
789
+ "step": 5720
790
+ },
791
+ {
792
+ "epoch": 41.48,
793
+ "learning_rate": 7.383032420889148e-05,
794
+ "loss": 0.0132,
795
+ "step": 5764
796
+ },
797
+ {
798
+ "epoch": 42.05,
799
+ "learning_rate": 7.354558985310295e-05,
800
+ "loss": 0.0136,
801
+ "step": 5808
802
+ },
803
+ {
804
+ "epoch": 42.25,
805
+ "learning_rate": 7.326085549731444e-05,
806
+ "loss": 0.0112,
807
+ "step": 5852
808
+ },
809
+ {
810
+ "epoch": 42.45,
811
+ "learning_rate": 7.297612114152592e-05,
812
+ "loss": 0.0122,
813
+ "step": 5896
814
+ },
815
+ {
816
+ "epoch": 43.03,
817
+ "learning_rate": 7.26913867857374e-05,
818
+ "loss": 0.0138,
819
+ "step": 5940
820
+ },
821
+ {
822
+ "epoch": 43.22,
823
+ "learning_rate": 7.240665242994889e-05,
824
+ "loss": 0.0108,
825
+ "step": 5984
826
+ },
827
+ {
828
+ "epoch": 43.42,
829
+ "learning_rate": 7.212191807416036e-05,
830
+ "loss": 0.0119,
831
+ "step": 6028
832
+ },
833
+ {
834
+ "epoch": 43.62,
835
+ "learning_rate": 7.183718371837184e-05,
836
+ "loss": 0.0108,
837
+ "step": 6072
838
+ },
839
+ {
840
+ "epoch": 44.2,
841
+ "learning_rate": 7.155244936258331e-05,
842
+ "loss": 0.0105,
843
+ "step": 6116
844
+ },
845
+ {
846
+ "epoch": 44.39,
847
+ "learning_rate": 7.12677150067948e-05,
848
+ "loss": 0.0108,
849
+ "step": 6160
850
+ },
851
+ {
852
+ "epoch": 44.59,
853
+ "learning_rate": 7.098298065100629e-05,
854
+ "loss": 0.0117,
855
+ "step": 6204
856
+ },
857
+ {
858
+ "epoch": 45.17,
859
+ "learning_rate": 7.069824629521776e-05,
860
+ "loss": 0.0109,
861
+ "step": 6248
862
+ },
863
+ {
864
+ "epoch": 45.37,
865
+ "learning_rate": 7.041998317478807e-05,
866
+ "loss": 0.0108,
867
+ "step": 6292
868
+ },
869
+ {
870
+ "epoch": 45.57,
871
+ "learning_rate": 7.013524881899955e-05,
872
+ "loss": 0.012,
873
+ "step": 6336
874
+ },
875
+ {
876
+ "epoch": 46.14,
877
+ "learning_rate": 6.985051446321102e-05,
878
+ "loss": 0.0101,
879
+ "step": 6380
880
+ },
881
+ {
882
+ "epoch": 46.34,
883
+ "learning_rate": 6.956578010742251e-05,
884
+ "loss": 0.0096,
885
+ "step": 6424
886
+ },
887
+ {
888
+ "epoch": 46.54,
889
+ "learning_rate": 6.928104575163398e-05,
890
+ "loss": 0.0102,
891
+ "step": 6468
892
+ },
893
+ {
894
+ "epoch": 47.12,
895
+ "learning_rate": 6.899631139584547e-05,
896
+ "loss": 0.0091,
897
+ "step": 6512
898
+ },
899
+ {
900
+ "epoch": 47.31,
901
+ "learning_rate": 6.871157704005695e-05,
902
+ "loss": 0.0092,
903
+ "step": 6556
904
+ },
905
+ {
906
+ "epoch": 47.51,
907
+ "learning_rate": 6.842684268426843e-05,
908
+ "loss": 0.0096,
909
+ "step": 6600
910
+ },
911
+ {
912
+ "epoch": 48.09,
913
+ "learning_rate": 6.814210832847992e-05,
914
+ "loss": 0.0091,
915
+ "step": 6644
916
+ },
917
+ {
918
+ "epoch": 48.29,
919
+ "learning_rate": 6.785737397269138e-05,
920
+ "loss": 0.0091,
921
+ "step": 6688
922
+ },
923
+ {
924
+ "epoch": 48.48,
925
+ "learning_rate": 6.757263961690287e-05,
926
+ "loss": 0.0097,
927
+ "step": 6732
928
+ },
929
+ {
930
+ "epoch": 49.06,
931
+ "learning_rate": 6.728790526111434e-05,
932
+ "loss": 0.0104,
933
+ "step": 6776
934
+ },
935
+ {
936
+ "epoch": 49.26,
937
+ "learning_rate": 6.700317090532583e-05,
938
+ "loss": 0.0091,
939
+ "step": 6820
940
+ },
941
+ {
942
+ "epoch": 49.46,
943
+ "learning_rate": 6.671843654953732e-05,
944
+ "loss": 0.0087,
945
+ "step": 6864
946
+ },
947
+ {
948
+ "epoch": 50.04,
949
+ "learning_rate": 6.643370219374879e-05,
950
+ "loss": 0.0097,
951
+ "step": 6908
952
+ },
953
+ {
954
+ "epoch": 50.23,
955
+ "learning_rate": 6.614896783796028e-05,
956
+ "loss": 0.009,
957
+ "step": 6952
958
+ },
959
+ {
960
+ "epoch": 50.43,
961
+ "learning_rate": 6.586423348217174e-05,
962
+ "loss": 0.0087,
963
+ "step": 6996
964
+ },
965
+ {
966
+ "epoch": 51.01,
967
+ "learning_rate": 6.557949912638323e-05,
968
+ "loss": 0.009,
969
+ "step": 7040
970
+ },
971
+ {
972
+ "epoch": 51.21,
973
+ "learning_rate": 6.529476477059471e-05,
974
+ "loss": 0.0076,
975
+ "step": 7084
976
+ },
977
+ {
978
+ "epoch": 51.4,
979
+ "learning_rate": 6.501003041480619e-05,
980
+ "loss": 0.0083,
981
+ "step": 7128
982
+ },
983
+ {
984
+ "epoch": 51.6,
985
+ "learning_rate": 6.472529605901768e-05,
986
+ "loss": 0.0079,
987
+ "step": 7172
988
+ },
989
+ {
990
+ "epoch": 52.18,
991
+ "learning_rate": 6.444056170322915e-05,
992
+ "loss": 0.0075,
993
+ "step": 7216
994
+ },
995
+ {
996
+ "epoch": 52.38,
997
+ "learning_rate": 6.415582734744064e-05,
998
+ "loss": 0.0077,
999
+ "step": 7260
1000
+ },
1001
+ {
1002
+ "epoch": 52.57,
1003
+ "learning_rate": 6.38710929916521e-05,
1004
+ "loss": 0.0069,
1005
+ "step": 7304
1006
+ },
1007
+ {
1008
+ "epoch": 53.15,
1009
+ "learning_rate": 6.358635863586358e-05,
1010
+ "loss": 0.0078,
1011
+ "step": 7348
1012
+ },
1013
+ {
1014
+ "epoch": 53.35,
1015
+ "learning_rate": 6.330162428007507e-05,
1016
+ "loss": 0.0077,
1017
+ "step": 7392
1018
+ },
1019
+ {
1020
+ "epoch": 53.55,
1021
+ "learning_rate": 6.301688992428655e-05,
1022
+ "loss": 0.0074,
1023
+ "step": 7436
1024
+ },
1025
+ {
1026
+ "epoch": 54.13,
1027
+ "learning_rate": 6.273215556849803e-05,
1028
+ "loss": 0.0071,
1029
+ "step": 7480
1030
+ },
1031
+ {
1032
+ "epoch": 54.32,
1033
+ "learning_rate": 6.244742121270951e-05,
1034
+ "loss": 0.0068,
1035
+ "step": 7524
1036
+ },
1037
+ {
1038
+ "epoch": 54.52,
1039
+ "learning_rate": 6.2162686856921e-05,
1040
+ "loss": 0.0081,
1041
+ "step": 7568
1042
+ },
1043
+ {
1044
+ "epoch": 55.1,
1045
+ "learning_rate": 6.187795250113247e-05,
1046
+ "loss": 0.0069,
1047
+ "step": 7612
1048
+ },
1049
+ {
1050
+ "epoch": 55.3,
1051
+ "learning_rate": 6.159321814534394e-05,
1052
+ "loss": 0.0064,
1053
+ "step": 7656
1054
+ },
1055
+ {
1056
+ "epoch": 55.49,
1057
+ "learning_rate": 6.130848378955543e-05,
1058
+ "loss": 0.0076,
1059
+ "step": 7700
1060
+ },
1061
+ {
1062
+ "epoch": 56.07,
1063
+ "learning_rate": 6.102374943376691e-05,
1064
+ "loss": 0.0067,
1065
+ "step": 7744
1066
+ },
1067
+ {
1068
+ "epoch": 56.27,
1069
+ "learning_rate": 6.073901507797839e-05,
1070
+ "loss": 0.0065,
1071
+ "step": 7788
1072
+ },
1073
+ {
1074
+ "epoch": 56.47,
1075
+ "learning_rate": 6.045428072218987e-05,
1076
+ "loss": 0.0067,
1077
+ "step": 7832
1078
+ },
1079
+ {
1080
+ "epoch": 57.04,
1081
+ "learning_rate": 6.016954636640135e-05,
1082
+ "loss": 0.0078,
1083
+ "step": 7876
1084
+ },
1085
+ {
1086
+ "epoch": 57.24,
1087
+ "learning_rate": 5.9884812010612834e-05,
1088
+ "loss": 0.0065,
1089
+ "step": 7920
1090
+ },
1091
+ {
1092
+ "epoch": 57.44,
1093
+ "learning_rate": 5.96000776548243e-05,
1094
+ "loss": 0.0074,
1095
+ "step": 7964
1096
+ },
1097
+ {
1098
+ "epoch": 58.02,
1099
+ "learning_rate": 5.931534329903579e-05,
1100
+ "loss": 0.0081,
1101
+ "step": 8008
1102
+ },
1103
+ {
1104
+ "epoch": 58.22,
1105
+ "learning_rate": 5.903060894324727e-05,
1106
+ "loss": 0.0071,
1107
+ "step": 8052
1108
+ },
1109
+ {
1110
+ "epoch": 58.41,
1111
+ "learning_rate": 5.874587458745875e-05,
1112
+ "loss": 0.0058,
1113
+ "step": 8096
1114
+ },
1115
+ {
1116
+ "epoch": 58.61,
1117
+ "learning_rate": 5.846114023167023e-05,
1118
+ "loss": 0.007,
1119
+ "step": 8140
1120
+ },
1121
+ {
1122
+ "epoch": 59.19,
1123
+ "learning_rate": 5.817640587588171e-05,
1124
+ "loss": 0.0054,
1125
+ "step": 8184
1126
+ },
1127
+ {
1128
+ "epoch": 59.39,
1129
+ "learning_rate": 5.789167152009319e-05,
1130
+ "loss": 0.0062,
1131
+ "step": 8228
1132
+ },
1133
+ {
1134
+ "epoch": 59.58,
1135
+ "learning_rate": 5.7606937164304666e-05,
1136
+ "loss": 0.0058,
1137
+ "step": 8272
1138
+ },
1139
+ {
1140
+ "epoch": 60.16,
1141
+ "learning_rate": 5.732220280851615e-05,
1142
+ "loss": 0.0056,
1143
+ "step": 8316
1144
+ },
1145
+ {
1146
+ "epoch": 60.36,
1147
+ "learning_rate": 5.703746845272763e-05,
1148
+ "loss": 0.0056,
1149
+ "step": 8360
1150
+ },
1151
+ {
1152
+ "epoch": 60.56,
1153
+ "learning_rate": 5.675273409693911e-05,
1154
+ "loss": 0.0061,
1155
+ "step": 8404
1156
+ },
1157
+ {
1158
+ "epoch": 61.13,
1159
+ "learning_rate": 5.646799974115059e-05,
1160
+ "loss": 0.0043,
1161
+ "step": 8448
1162
+ },
1163
+ {
1164
+ "epoch": 61.33,
1165
+ "learning_rate": 5.618326538536207e-05,
1166
+ "loss": 0.005,
1167
+ "step": 8492
1168
+ },
1169
+ {
1170
+ "epoch": 61.53,
1171
+ "learning_rate": 5.589853102957355e-05,
1172
+ "loss": 0.0055,
1173
+ "step": 8536
1174
+ },
1175
+ {
1176
+ "epoch": 62.11,
1177
+ "learning_rate": 5.5613796673785025e-05,
1178
+ "loss": 0.0051,
1179
+ "step": 8580
1180
+ },
1181
+ {
1182
+ "epoch": 62.3,
1183
+ "learning_rate": 5.5329062317996505e-05,
1184
+ "loss": 0.0049,
1185
+ "step": 8624
1186
+ },
1187
+ {
1188
+ "epoch": 62.5,
1189
+ "learning_rate": 5.5044327962207986e-05,
1190
+ "loss": 0.0062,
1191
+ "step": 8668
1192
+ },
1193
+ {
1194
+ "epoch": 63.08,
1195
+ "learning_rate": 5.475959360641947e-05,
1196
+ "loss": 0.0058,
1197
+ "step": 8712
1198
+ },
1199
+ {
1200
+ "epoch": 63.28,
1201
+ "learning_rate": 5.447485925063095e-05,
1202
+ "loss": 0.0069,
1203
+ "step": 8756
1204
+ },
1205
+ {
1206
+ "epoch": 63.48,
1207
+ "learning_rate": 5.419012489484243e-05,
1208
+ "loss": 0.0064,
1209
+ "step": 8800
1210
+ },
1211
+ {
1212
+ "epoch": 64.05,
1213
+ "learning_rate": 5.3905390539053916e-05,
1214
+ "loss": 0.006,
1215
+ "step": 8844
1216
+ },
1217
+ {
1218
+ "epoch": 64.25,
1219
+ "learning_rate": 5.362065618326538e-05,
1220
+ "loss": 0.0059,
1221
+ "step": 8888
1222
+ },
1223
+ {
1224
+ "epoch": 64.45,
1225
+ "learning_rate": 5.3335921827476864e-05,
1226
+ "loss": 0.005,
1227
+ "step": 8932
1228
+ },
1229
+ {
1230
+ "epoch": 65.03,
1231
+ "learning_rate": 5.3051187471688344e-05,
1232
+ "loss": 0.0066,
1233
+ "step": 8976
1234
+ },
1235
+ {
1236
+ "epoch": 65.22,
1237
+ "learning_rate": 5.2766453115899825e-05,
1238
+ "loss": 0.0054,
1239
+ "step": 9020
1240
+ },
1241
+ {
1242
+ "epoch": 65.42,
1243
+ "learning_rate": 5.248171876011131e-05,
1244
+ "loss": 0.0059,
1245
+ "step": 9064
1246
+ },
1247
+ {
1248
+ "epoch": 65.62,
1249
+ "learning_rate": 5.219698440432279e-05,
1250
+ "loss": 0.0059,
1251
+ "step": 9108
1252
+ },
1253
+ {
1254
+ "epoch": 66.2,
1255
+ "learning_rate": 5.1912250048534274e-05,
1256
+ "loss": 0.0059,
1257
+ "step": 9152
1258
+ },
1259
+ {
1260
+ "epoch": 66.39,
1261
+ "learning_rate": 5.162751569274574e-05,
1262
+ "loss": 0.0058,
1263
+ "step": 9196
1264
+ },
1265
+ {
1266
+ "epoch": 66.59,
1267
+ "learning_rate": 5.134278133695722e-05,
1268
+ "loss": 0.0059,
1269
+ "step": 9240
1270
+ },
1271
+ {
1272
+ "epoch": 67.17,
1273
+ "learning_rate": 5.10580469811687e-05,
1274
+ "loss": 0.0045,
1275
+ "step": 9284
1276
+ },
1277
+ {
1278
+ "epoch": 67.37,
1279
+ "learning_rate": 5.077331262538019e-05,
1280
+ "loss": 0.0054,
1281
+ "step": 9328
1282
+ },
1283
+ {
1284
+ "epoch": 67.57,
1285
+ "learning_rate": 5.048857826959167e-05,
1286
+ "loss": 0.0052,
1287
+ "step": 9372
1288
+ },
1289
+ {
1290
+ "epoch": 68.14,
1291
+ "learning_rate": 5.020384391380315e-05,
1292
+ "loss": 0.005,
1293
+ "step": 9416
1294
+ },
1295
+ {
1296
+ "epoch": 68.34,
1297
+ "learning_rate": 4.9919109558014625e-05,
1298
+ "loss": 0.0051,
1299
+ "step": 9460
1300
+ },
1301
+ {
1302
+ "epoch": 68.54,
1303
+ "learning_rate": 4.9634375202226106e-05,
1304
+ "loss": 0.005,
1305
+ "step": 9504
1306
+ },
1307
+ {
1308
+ "epoch": 69.12,
1309
+ "learning_rate": 4.934964084643759e-05,
1310
+ "loss": 0.0054,
1311
+ "step": 9548
1312
+ },
1313
+ {
1314
+ "epoch": 69.31,
1315
+ "learning_rate": 4.906490649064907e-05,
1316
+ "loss": 0.0055,
1317
+ "step": 9592
1318
+ },
1319
+ {
1320
+ "epoch": 69.51,
1321
+ "learning_rate": 4.878017213486055e-05,
1322
+ "loss": 0.0053,
1323
+ "step": 9636
1324
+ },
1325
+ {
1326
+ "epoch": 70.09,
1327
+ "learning_rate": 4.849543777907203e-05,
1328
+ "loss": 0.0051,
1329
+ "step": 9680
1330
+ },
1331
+ {
1332
+ "epoch": 70.29,
1333
+ "learning_rate": 4.821070342328351e-05,
1334
+ "loss": 0.0047,
1335
+ "step": 9724
1336
+ },
1337
+ {
1338
+ "epoch": 70.48,
1339
+ "learning_rate": 4.7925969067494984e-05,
1340
+ "loss": 0.0053,
1341
+ "step": 9768
1342
+ },
1343
+ {
1344
+ "epoch": 71.06,
1345
+ "learning_rate": 4.7641234711706464e-05,
1346
+ "loss": 0.0047,
1347
+ "step": 9812
1348
+ },
1349
+ {
1350
+ "epoch": 71.26,
1351
+ "learning_rate": 4.735650035591795e-05,
1352
+ "loss": 0.0049,
1353
+ "step": 9856
1354
+ },
1355
+ {
1356
+ "epoch": 71.46,
1357
+ "learning_rate": 4.7071766000129426e-05,
1358
+ "loss": 0.0049,
1359
+ "step": 9900
1360
+ },
1361
+ {
1362
+ "epoch": 72.04,
1363
+ "learning_rate": 4.6787031644340907e-05,
1364
+ "loss": 0.005,
1365
+ "step": 9944
1366
+ },
1367
+ {
1368
+ "epoch": 72.23,
1369
+ "learning_rate": 4.650229728855239e-05,
1370
+ "loss": 0.0038,
1371
+ "step": 9988
1372
+ },
1373
+ {
1374
+ "epoch": 72.43,
1375
+ "learning_rate": 4.621756293276387e-05,
1376
+ "loss": 0.0045,
1377
+ "step": 10032
1378
+ },
1379
+ {
1380
+ "epoch": 73.01,
1381
+ "learning_rate": 4.593282857697534e-05,
1382
+ "loss": 0.004,
1383
+ "step": 10076
1384
+ },
1385
+ {
1386
+ "epoch": 73.21,
1387
+ "learning_rate": 4.564809422118683e-05,
1388
+ "loss": 0.004,
1389
+ "step": 10120
1390
+ },
1391
+ {
1392
+ "epoch": 73.4,
1393
+ "learning_rate": 4.536335986539831e-05,
1394
+ "loss": 0.0042,
1395
+ "step": 10164
1396
+ },
1397
+ {
1398
+ "epoch": 73.6,
1399
+ "learning_rate": 4.5078625509609784e-05,
1400
+ "loss": 0.0048,
1401
+ "step": 10208
1402
+ },
1403
+ {
1404
+ "epoch": 74.18,
1405
+ "learning_rate": 4.4793891153821265e-05,
1406
+ "loss": 0.0038,
1407
+ "step": 10252
1408
+ },
1409
+ {
1410
+ "epoch": 74.38,
1411
+ "learning_rate": 4.4509156798032745e-05,
1412
+ "loss": 0.0034,
1413
+ "step": 10296
1414
+ },
1415
+ {
1416
+ "epoch": 74.57,
1417
+ "learning_rate": 4.4224422442244226e-05,
1418
+ "loss": 0.0044,
1419
+ "step": 10340
1420
+ },
1421
+ {
1422
+ "epoch": 75.15,
1423
+ "learning_rate": 4.393968808645571e-05,
1424
+ "loss": 0.0034,
1425
+ "step": 10384
1426
+ },
1427
+ {
1428
+ "epoch": 75.35,
1429
+ "learning_rate": 4.365495373066719e-05,
1430
+ "loss": 0.0036,
1431
+ "step": 10428
1432
+ },
1433
+ {
1434
+ "epoch": 75.55,
1435
+ "learning_rate": 4.337021937487867e-05,
1436
+ "loss": 0.0047,
1437
+ "step": 10472
1438
+ },
1439
+ {
1440
+ "epoch": 76.13,
1441
+ "learning_rate": 4.308548501909014e-05,
1442
+ "loss": 0.0034,
1443
+ "step": 10516
1444
+ },
1445
+ {
1446
+ "epoch": 76.32,
1447
+ "learning_rate": 4.280075066330162e-05,
1448
+ "loss": 0.0034,
1449
+ "step": 10560
1450
+ },
1451
+ {
1452
+ "epoch": 76.52,
1453
+ "learning_rate": 4.2516016307513104e-05,
1454
+ "loss": 0.0039,
1455
+ "step": 10604
1456
+ }
1457
+ ],
1458
+ "logging_steps": 44,
1459
+ "max_steps": 17171,
1460
+ "num_train_epochs": 77,
1461
+ "save_steps": 500,
1462
+ "total_flos": 9.293451052135219e+17,
1463
+ "trial_name": null,
1464
+ "trial_params": null
1465
+ }
checkpoint-10626/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84a56940a24c8c43c8c108d57a7abdd91fe1d0dc57bbd95c08dd13f12d198901
3
+ size 4091
runs/Oct18_20-37-50_AM-3080TI-VR-PC/events.out.tfevents.1697657871.AM-3080TI-VR-PC.667.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:063c138b44fd3aa001db08618181ca9735bc6749ee4e2588c6bcf000c9cf02d6
3
+ size 5428
runs/Oct18_20-51-24_AM-3080TI-VR-PC/events.out.tfevents.1697658684.AM-3080TI-VR-PC.729.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb7f0de082a63bfb76adff3e9ab2ee8a7c4441022c2a98dd70493cf491239491
3
+ size 42677
special_tokens_map.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>"
6
+ ],
7
+ "bos_token": "<s>",
8
+ "eos_token": "</s>",
9
+ "pad_token": "</s>",
10
+ "unk_token": "<unk>"
11
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "additional_special_tokens": [
29
+ "<unk>",
30
+ "<s>",
31
+ "</s>"
32
+ ],
33
+ "bos_token": "<s>",
34
+ "clean_up_tokenization_spaces": false,
35
+ "eos_token": "</s>",
36
+ "legacy": true,
37
+ "model_max_length": 32768,
38
+ "pad_token": "</s>",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": true
44
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84a56940a24c8c43c8c108d57a7abdd91fe1d0dc57bbd95c08dd13f12d198901
3
+ size 4091
training_params.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"model": "bn22/Mistral-7B-Instruct-v0.1-sharded", "data_path": "YL95/REDL_LLM1_naive0", "project_name": "REDL_LLM1_0", "train_split": "train", "valid_split": null, "text_column": "text", "lr": 0.0001, "epochs": 77, "batch_size": 2, "warmup_ratio": 0.1, "gradient_accumulation": 1, "optimizer": "adamw_torch", "scheduler": "linear", "weight_decay": 0.0, "max_grad_norm": 1.0, "seed": 95, "add_eos_token": true, "block_size": -1, "use_peft": true, "lora_r": 16, "lora_alpha": 32, "lora_dropout": 0.05, "logging_steps": -1, "evaluation_strategy": "epoch", "save_total_limit": 1, "save_strategy": "epoch", "auto_find_batch_size": false, "fp16": false, "push_to_hub": true, "use_int8": false, "model_max_length": 32768, "repo_id": "YL95/REDL_LLM1_0", "use_int4": true, "trainer": "sft", "target_modules": null, "merge_adapter": false, "username": "YL95", "use_flash_attention_2": false}