--- tags: - autotrain - text-classification widget: - text: I love AutoTrain datasets: - dair-ai/emotion license: mit language: - en pipeline_tag: text-classification base_model: - google-bert/bert-base-uncased --- # Model Trained Using AutoTrain - Problem type: Text Classification # Request Example ```Python from transformers import pipeline # Ensure the model and tokenizer are loaded on the GPU by setting device=0 emotion_classifier = pipeline( "text-classification", model="XuehangCang/Emotion-Classification", # device=0 # Use the first GPU device ) texts = [ "I'm so happy today!", "This is really sad.", "I'm a bit nervous about what's going to happen.", "This news makes me angry." ] for text in texts: result = emotion_classifier(text) print(f"Text: {text}") print(f"Emotion classification result: {result}\n") """ Device set to use cpu Text: I'm so happy today! Emotion classification result: [{'label': 'joy', 'score': 0.9994311928749084}] Text: This is really sad. Emotion classification result: [{'label': 'sadness', 'score': 0.9989039897918701}] Text: I'm a bit nervous about what's going to happen. Emotion classification result: [{'label': 'fear', 'score': 0.998763918876648}] Text: This news makes me angry. Emotion classification result: [{'label': 'anger', 'score': 0.9977891445159912}] """ ``` ## Validation Metrics loss: 0.13341853022575378 f1_macro: 0.9169826832623412 f1_micro: 0.943 f1_weighted: 0.9427985114313238 precision_macro: 0.9227534317185495 precision_micro: 0.943 precision_weighted: 0.9430912986498113 recall_macro: 0.9119580961776227 recall_micro: 0.943 recall_weighted: 0.943 accuracy: 0.943 ## License CC-0