--- license: apache-2.0 --- # HPD-TinyBERT-F128 This repository contains the pre-trained models for our paper [Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation](https://arxiv.org/abs/2203.07687). The sentence embedding model contains only 14M parameters and the model size is only 55MB. ## Overview We propose **H**omomorphic **P**rojective **D**istillation (HPD) to learn compressed sentence embeddings. Our method augments a small Transformer encoder model with learnable projection layers to produce compact representations while mimicking a large pre-trained language model to retain the sentence representation quality. ## Details This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search. The teacher model is [`princeton-nlp/sup-simcse-roberta-large`](https://huggingface.co./princeton-nlp/sup-simcse-bert-base-uncased) and the student model is [`nreimers/TinyBERT_L-4_H-312_v2`](https://huggingface.co./nreimers/TinyBERT_L-4_H-312_v2). ## Usage Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` After installing the package, you can simply load our model ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('Xuandong/HPD-TinyBERT-F128') ``` Then you can use our model for **encoding sentences into embeddings** ```python sentences = ['He plays guitar.', 'A street vendor is outside.'] sentence_embeddings = model.encode(sentences) for sentence, embedding in zip(sentences, sentence_embeddings): print("Sentence:", sentence) print("Embedding:", embedding) print("") ``` ## Evaluation Results We evaluate our model on semantic textual similarity (STS) tasks. The results are: | STS12 | STS13 | STS14 | STS15 | STS16 | STS-B | SICK-R | Avg. | |-------|-------|-------|-------|-------|--------------|-----------------|-------| | 74.29 | 83.05 | 78.80 | 84.62 | 81.17 | 84.36 | 80.83 | 81.02 | ## Training Please refer to the github repo (https://github.com/XuandongZhao/HPD) for the details about the training. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 312, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citation Please cite our paper if you use HPD in your work: ```bibtex @article{zhao2022compressing, title={Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation}, author={Zhao, Xuandong and Yu, Zhiguo and Wu, Ming and Li, Lei}, journal={arXiv preprint arXiv:2203.07687}, year={2022} } ```