add files
Browse files- .DS_Store +0 -0
- 1_Pooling/config.json +7 -0
- 2_Dense/config.json +1 -0
- 2_Dense/pytorch_model.bin +3 -0
- README.md +78 -3
- config.json +26 -0
- config_sentence_transformers.json +7 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 312,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 312, "out_features": 128, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daf2b76d4fa71b4af3c97c636de43e2ee82357731092e45cf7f7863c6be85692
|
3 |
+
size 161319
|
README.md
CHANGED
@@ -1,3 +1,78 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# HPD-TinyBERT-F128
|
3 |
+
|
4 |
+
This repository contains the pre-trained models for our paper [Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation](https://arxiv.org/abs/2203.07687).
|
5 |
+
|
6 |
+
## Overview
|
7 |
+
|
8 |
+
We propose **H**omomorphic **P**rojective **D**istillation (HPD) to learn compressed sentence embeddings. Our method augments a small Transformer encoder model with learnable projection layers to produce compact representations while mimicking a large pre-trained language model to retain the sentence representation quality.
|
9 |
+
|
10 |
+
## Details
|
11 |
+
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 128 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
+
|
14 |
+
The teacher model is [`princeton-nlp/sup-simcse-roberta-large`](https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased) and the student model is [`nreimers/TinyBERT_L-4_H-312_v2`](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2).
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
|
18 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
+
|
20 |
+
```
|
21 |
+
pip install -U sentence-transformers
|
22 |
+
```
|
23 |
+
|
24 |
+
After installing the package, you can simply load our model
|
25 |
+
```python
|
26 |
+
from sentence_transformers import SentenceTransformer
|
27 |
+
model = SentenceTransformer('Xuandong/HPD-TinyBERT-F128')
|
28 |
+
```
|
29 |
+
|
30 |
+
Then you can use our model for **encoding sentences into embeddings**
|
31 |
+
```python
|
32 |
+
sentences = ['He plays guitar.', 'A street vendor is outside.', 'A woman is reading.']
|
33 |
+
sentence_embeddings = model.encode(sentences)
|
34 |
+
|
35 |
+
for sentence, embedding in zip(sentences, sentence_embeddings):
|
36 |
+
print("Sentence:", sentence)
|
37 |
+
print("Embedding:", embedding)
|
38 |
+
print("")
|
39 |
+
```
|
40 |
+
|
41 |
+
## Evaluation Results
|
42 |
+
|
43 |
+
We evaluate our model on semantic textual similarity (STS) tasks. The results are:
|
44 |
+
|
45 |
+
```
|
46 |
+
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
|
47 |
+
| STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | Avg. |
|
48 |
+
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
|
49 |
+
| 74.29 | 83.05 | 78.80 | 84.62 | 81.17 | 84.36 | 80.83 | 81.02 |
|
50 |
+
+-------+-------+-------+-------+-------+--------------+-----------------+-------+
|
51 |
+
```
|
52 |
+
|
53 |
+
## Training
|
54 |
+
|
55 |
+
Please refer to the github repo (https://github.com/XuandongZhao/HPD) for the details about the training.
|
56 |
+
|
57 |
+
|
58 |
+
## Full Model Architecture
|
59 |
+
```
|
60 |
+
SentenceTransformer(
|
61 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
62 |
+
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
63 |
+
(2): Dense({'in_features': 312, 'out_features': 128, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
64 |
+
)
|
65 |
+
```
|
66 |
+
|
67 |
+
## Citation
|
68 |
+
|
69 |
+
Please cite our paper if you use HPD in your work:
|
70 |
+
|
71 |
+
```bibtex
|
72 |
+
@article{zhao2022compressing,
|
73 |
+
title={Compressing Sentence Representation for Semantic Retrieval via Homomorphic Projective Distillation},
|
74 |
+
author={Zhao, Xuandong and Yu, Zhiguo and Wu, Ming and Li, Lei},
|
75 |
+
journal={arXiv preprint arXiv:2203.07687},
|
76 |
+
year={2022}
|
77 |
+
}
|
78 |
+
```
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Xuandong/HPD-TinyBERT-F128",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 312,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1200,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 4,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.11.3",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.11.3",
|
5 |
+
"pytorch": "1.10.0+cu113"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f06d56cfa2d491c0d9351105f75c1091795a77049f849b9dfd8d9be2aea808ab
|
3 |
+
size 57431373
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "Xuandong/HPD-TinyBERT-F128", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|