CuteGPT is an open-source conversational language model that supports both Chinese and English, developed by Fudan University KnowledgeWorks Laboratory. It has a scale of 13B (13 billion) parameters. It can perform int8 precision inference on a single 3090 graphics card. CuteGPT base is pre-trained on Chinese-English corpus. Subsequently, it is fine-tuned with conversational instructions to enhance the model's ability to understand instructions. Based on the KW-CuteGPT-7b version, KW-CuteGPT-13b has improved accuracy in knowledge, understanding of complex instructions, ability to comprehend long texts, reasoning ability, faithful question answering, and other capabilities. Currently, the KW-CuteGPT-13b version model outperforms the majority of models of similar scale in certain evaluation tasks. **Note: Ask The FAIR team of Meta AI for the license for LLAMA usage first.** ```python from transformers import LlamaForCausalLM, LlamaTokenizer import torch def generate_prompt(query, history, input=None): prompt = "" for i, (old_query, response) in enumerate(history): prompt += "{}{}\n".format(old_query, response) prompt += "{}".format(query) return prompt # Load model device = torch.device("cuda:0") model_name = "/data/dell/xuyipei/my_llama/my_llama_13b/llama_13b_112_sft_v1" tokenizer = LlamaTokenizer.from_pretrained(model_name) model = LlamaForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16 ) model.eval() model = model.to(device) # Inference history = [] queries = ['请推荐五本名著,依次列出作品名、作者\n', '请再来三本\n'] memory_limit = 3 # the number of (query, response) to remember for query in queries: prompt = generate_prompt(prompt, history) input_ids = tokenizer(query, return_tensors="pt", padding=False, truncation=False, add_special_tokens=False) input_ids = input_ids["input_ids"].to(device) with torch.no_grad(): outputs=model.generate( input_ids=input_ids, top_p=0.8, top_k=50, repetition_penalty=1.1, max_new_tokens = 256, early_stopping = True, eos_token_id = tokenizer.convert_tokens_to_ids(''), pad_token_id = tokenizer.eos_token_id, min_length = input_ids.shape[1] + 1 ) s = outputs[0] response=tokenizer.decode(s) response = response.replace('', '').replace('', '').replace('', '') print(response) history.append((query, response)) history = history[-memory_limit:] ```