Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +679 -0
- config.json +26 -0
- config_sentence_transformers.json +12 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,679 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Snowflake/snowflake-arctic-embed-m
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- cosine_accuracy@1
|
6 |
+
- cosine_accuracy@3
|
7 |
+
- cosine_accuracy@5
|
8 |
+
- cosine_accuracy@10
|
9 |
+
- cosine_precision@1
|
10 |
+
- cosine_precision@3
|
11 |
+
- cosine_precision@5
|
12 |
+
- cosine_precision@10
|
13 |
+
- cosine_recall@1
|
14 |
+
- cosine_recall@3
|
15 |
+
- cosine_recall@5
|
16 |
+
- cosine_recall@10
|
17 |
+
- cosine_ndcg@10
|
18 |
+
- cosine_mrr@10
|
19 |
+
- cosine_map@100
|
20 |
+
- dot_accuracy@1
|
21 |
+
- dot_accuracy@3
|
22 |
+
- dot_accuracy@5
|
23 |
+
- dot_accuracy@10
|
24 |
+
- dot_precision@1
|
25 |
+
- dot_precision@3
|
26 |
+
- dot_precision@5
|
27 |
+
- dot_precision@10
|
28 |
+
- dot_recall@1
|
29 |
+
- dot_recall@3
|
30 |
+
- dot_recall@5
|
31 |
+
- dot_recall@10
|
32 |
+
- dot_ndcg@10
|
33 |
+
- dot_mrr@10
|
34 |
+
- dot_map@100
|
35 |
+
pipeline_tag: sentence-similarity
|
36 |
+
tags:
|
37 |
+
- sentence-transformers
|
38 |
+
- sentence-similarity
|
39 |
+
- feature-extraction
|
40 |
+
- generated_from_trainer
|
41 |
+
- dataset_size:600
|
42 |
+
- loss:MatryoshkaLoss
|
43 |
+
- loss:MultipleNegativesRankingLoss
|
44 |
+
widget:
|
45 |
+
- source_sentence: How can high compute resource utilization in training GAI models
|
46 |
+
affect ecosystems?
|
47 |
+
sentences:
|
48 |
+
- "should not be used in education, work, housing, or in other contexts where the\
|
49 |
+
\ use of such surveillance \ntechnologies is likely to limit rights, opportunities,\
|
50 |
+
\ or access. Whenever possible, you should have access to \nreporting that confirms\
|
51 |
+
\ your data decisions have been respected and provides an assessment of the \n\
|
52 |
+
potential impact of surveillance technologies on your rights, opportunities, or\
|
53 |
+
\ access. \nNOTICE AND EXPLANATION"
|
54 |
+
- "Legal Disclaimer \nThe Blueprint for an AI Bill of Rights: Making Automated Systems\
|
55 |
+
\ Work for the American People is a white paper \npublished by the White House\
|
56 |
+
\ Office of Science and Technology Policy. It is intended to support the \ndevelopment\
|
57 |
+
\ of policies and practices that protect civil rights and promote democratic values\
|
58 |
+
\ in the building, \ndeployment, and governance of automated systems. \nThe Blueprint\
|
59 |
+
\ for an AI Bill of Rights is non-binding and does not constitute U.S. government\
|
60 |
+
\ policy. It \ndoes not supersede, modify, or direct an interpretation of any\
|
61 |
+
\ existing statute, regulation, policy, or \ninternational instrument. It does\
|
62 |
+
\ not constitute binding guidance for the public or Federal agencies and"
|
63 |
+
- "or stereotyping content . \n4. Data Privacy: Impacts due to l eakage and unauthorized\
|
64 |
+
\ use, disclosure , or de -anonymization of \nbiometric, health, location , or\
|
65 |
+
\ other personally identifiable information or sensitive data .7 \n5. Environmental\
|
66 |
+
\ Impacts: Impacts due to high compute resource utilization in training or \n\
|
67 |
+
operating GAI models, and related outcomes that may adversely impact ecosystems.\
|
68 |
+
\ \n6. Harmful Bias or Homogenization: Amplification and exacerbation of historical,\
|
69 |
+
\ societal, and \nsystemic biases ; performance disparities8 between sub- groups\
|
70 |
+
\ or languages , possibly due to \nnon- representative training data , that result\
|
71 |
+
\ in discrimination, amplification of biases, or"
|
72 |
+
- source_sentence: What are the potential risks associated with human-AI configuration
|
73 |
+
in GAI systems?
|
74 |
+
sentences:
|
75 |
+
- "establish approved GAI technology and service provider lists. Value Chain and\
|
76 |
+
\ Component \nIntegration \nGV-6.1-0 08 Maintain records of changes to content\
|
77 |
+
\ made by third parties to promote content \nprovenance, including sources, timestamps,\
|
78 |
+
\ metadata . Information Integrity ; Value Chain \nand Component Integration;\
|
79 |
+
\ Intellectual Property \nGV-6.1-0 09 Update and integrate due diligence processes\
|
80 |
+
\ for GAI acquisition and \nprocurement vendor assessments to include intellectual\
|
81 |
+
\ property, data privacy, security, and other risks. For example, update p rocesses\
|
82 |
+
\ \nto: Address solutions that \nmay rely on embedded GAI technologies; Address\
|
83 |
+
\ ongoing monitoring , \nassessments, and alerting, dynamic risk assessments,\
|
84 |
+
\ and real -time reporting"
|
85 |
+
- "could lead to homogenized outputs, including by amplifying any homogenization\
|
86 |
+
\ from the model used to \ngenerate the synthetic training data . \nTrustworthy\
|
87 |
+
\ AI Characteristics: Fair with Harmful Bias Managed, Valid and Reliable \n\
|
88 |
+
2.7. Human -AI Configuration \nGAI system use can involve varying risks of misconfigurations\
|
89 |
+
\ and poor interactions between a system \nand a human who is interacti ng with\
|
90 |
+
\ it. Humans bring their unique perspectives , experiences , or domain -\nspecific\
|
91 |
+
\ expertise to interactions with AI systems but may not have detailed knowledge\
|
92 |
+
\ of AI systems and \nhow they work. As a result, h uman experts may be unnecessarily\
|
93 |
+
\ “averse ” to GAI systems , and thus \ndeprive themselves or others of GAI’s\
|
94 |
+
\ beneficial uses ."
|
95 |
+
- "requests image features that are inconsistent with the stereotypes. Harmful\
|
96 |
+
\ b ias in GAI models , which \nmay stem from their training data , can also \
|
97 |
+
\ cause representational harm s or perpetuate or exacerbate \nbias based on\
|
98 |
+
\ race, gender, disability, or other protected classes . \nHarmful b ias in GAI\
|
99 |
+
\ systems can also lead to harms via disparities between how a model performs\
|
100 |
+
\ for \ndifferent subgroups or languages (e.g., an LLM may perform less well\
|
101 |
+
\ for non- English languages or \ncertain dialects ). Such disparities can contribute\
|
102 |
+
\ to discriminatory decision -making or amplification of \nexisting societal biases.\
|
103 |
+
\ In addition, GAI systems may be inappropriately trusted to perform similarly"
|
104 |
+
- source_sentence: What types of content are considered harmful biases in the context
|
105 |
+
of information security?
|
106 |
+
sentences:
|
107 |
+
- "MS-2.5-0 05 Verify GAI system training data and TEVV data provenance, and that\
|
108 |
+
\ fine -tuning \nor retrieval- augmented generation data is grounded. Information\
|
109 |
+
\ Integrity \nMS-2.5-0 06 Regularly review security and safety guardrails, especially\
|
110 |
+
\ if the GAI system is \nbeing operated in novel circumstances. This includes\
|
111 |
+
\ reviewing reasons why the \nGAI system was initially assessed as being safe\
|
112 |
+
\ to deploy. Information Security ; Dangerous , \nViolent, or Hateful Content\
|
113 |
+
\ \nAI Actor Tasks: Domain Experts, TEVV"
|
114 |
+
- "to diminished transparency or accountability for downstream users. While this\
|
115 |
+
\ is a risk for traditional AI \nsystems and some other digital technologies\
|
116 |
+
\ , the risk is exacerbated for GAI due to the scale of the \ntraining data, which\
|
117 |
+
\ may be too large for humans to vet; the difficulty of training foundation models,\
|
118 |
+
\ \nwhich leads to extensive reuse of limited numbers of models; an d the extent\
|
119 |
+
\ to which GAI may be \nintegrat ed into other devices and services. As GAI\
|
120 |
+
\ systems often involve many distinct third -party \ncomponents and data sources\
|
121 |
+
\ , it may be difficult to attribute issues in a system’s behavior to any one of\
|
122 |
+
\ \nthese sources. \nErrors in t hird-party GAI components can also have downstream\
|
123 |
+
\ impacts on accuracy and robustness ."
|
124 |
+
- "biases in the generated content. Information Security ; Harmful Bias \nand Homogenization\
|
125 |
+
\ \nMG-2.2-005 Engage in due diligence to analyze GAI output for harmful content,\
|
126 |
+
\ potential \nmisinformation , and CBRN -related or NCII content . CBRN Information\
|
127 |
+
\ or Capabilities ; \nObscene, Degrading, and/or \nAbusive Content ; Harmful Bias\
|
128 |
+
\ and \nHomogenization ; Dangerous , \nViolent, or Hateful Content"
|
129 |
+
- source_sentence: What is the focus of the paper by Padmakumar et al (2024) regarding
|
130 |
+
language models and content diversity?
|
131 |
+
sentences:
|
132 |
+
- "Content \nMS-2.12- 002 Document anticipated environmental impacts of model development,\
|
133 |
+
\ \nmaintenance, and deployment in product design decisions. Environmental \n\
|
134 |
+
MS-2.12- 003 Measure or estimate environmental impacts (e.g., energy and water\
|
135 |
+
\ \nconsumption) for training, fine tuning, and deploying models: Verify tradeoffs\
|
136 |
+
\ \nbetween resources used at inference time versus additional resources required\
|
137 |
+
\ at training time. Environmental \nMS-2.12- 004 Verify effectiveness of carbon\
|
138 |
+
\ capture or offset programs for GAI training and \napplications , and address\
|
139 |
+
\ green -washing concerns . Environmental \nAI Actor Tasks: AI Deployment, AI\
|
140 |
+
\ Impact Assessment, Domain Experts, Operation and Monitoring, TEVV"
|
141 |
+
- "opportunities, undermine their privac y, or pervasively track their activity—often\
|
142 |
+
\ without their knowledge or \nconsent. \nThese outcomes are deeply harmful—but\
|
143 |
+
\ they are not inevitable. Automated systems have brought about extraor-\ndinary\
|
144 |
+
\ benefits, from technology that helps farmers grow food more efficiently and\
|
145 |
+
\ computers that predict storm \npaths, to algorithms that can identify diseases\
|
146 |
+
\ in patients. These tools now drive important decisions across \nsectors, while\
|
147 |
+
\ data is helping to revolutionize global industries. Fueled by the power of American\
|
148 |
+
\ innovation, \nthese tools hold the potential to redefine every part of our society\
|
149 |
+
\ and make life better for everyone."
|
150 |
+
- "Publishing, Paris . https://doi.org/10.1787/d1a8d965- en \nOpenAI (2023) GPT-4\
|
151 |
+
\ System Card . https://cdn.openai.com/papers/gpt -4-system -card.pdf \nOpenAI\
|
152 |
+
\ (2024) GPT-4 Technical Report. https://arxiv.org/pdf/2303.08774 \nPadmakumar,\
|
153 |
+
\ V. et al. (2024) Does writing with language models reduce content diversity?\
|
154 |
+
\ ICLR . \nhttps://arxiv.org/pdf/2309.05196 \nPark, P. et. al. (2024) AI\
|
155 |
+
\ deception: A survey of examples, risks, and potential solutions. Patterns,\
|
156 |
+
\ 5(5). \narXiv . https://arxiv.org/pdf/2308.14752 \nPartnership on AI (2023)\
|
157 |
+
\ Building a Glossary for Synthetic Media Transparency Methods, Part 1: Indirect\
|
158 |
+
\ \nDisclosure . https://partnershiponai.org/glossary -for-synthetic -media- transparency\
|
159 |
+
\ -methods -part-1-\nindirect -disclosure/"
|
160 |
+
- source_sentence: What are the key components involved in ensuring data quality and
|
161 |
+
ethical considerations in AI systems?
|
162 |
+
sentences:
|
163 |
+
- "(such as where significant negative impacts are imminent, severe harms are actually\
|
164 |
+
\ occurring, or large -scale risks could occur); and broad GAI negative risks,\
|
165 |
+
\ \nincluding: Immature safety or risk cultures related to AI and GAI design,\
|
166 |
+
\ development and deployment, public information integrity risks, including impacts\
|
167 |
+
\ on democratic processes, unknown long -term performance characteristics of GAI.\
|
168 |
+
\ Information Integrity ; Dangerous , \nViolent, or Hateful Content ; CBRN \n\
|
169 |
+
Information or Capabilities \nGV-1.3-007 Devise a plan to halt development or\
|
170 |
+
\ deployment of a GAI system that poses unacceptable negative risk. CBRN Information\
|
171 |
+
\ and Capability ; \nInformation Security ; Information \nIntegrity \nAI Actor\
|
172 |
+
\ Tasks: Governance and Oversight"
|
173 |
+
- "30 MEASURE 2.2: Evaluations involving human subjects meet applicable requirements\
|
174 |
+
\ (including human subject protection) and are \nrepresentative of the relevant\
|
175 |
+
\ population. \nAction ID Suggested Action GAI Risks \nMS-2.2-001 Assess and\
|
176 |
+
\ manage statistical biases related to GAI content provenance through \ntechniques\
|
177 |
+
\ such as re -sampling, re -weighting, or adversarial training. Information Integrity\
|
178 |
+
\ ; Information \nSecurity ; Harmful Bias and \nHomogenization \nMS-2.2-002 Document\
|
179 |
+
\ how content provenance data is tracked and how that data interact s \nwith\
|
180 |
+
\ privacy and security . Consider : Anonymiz ing data to protect the privacy\
|
181 |
+
\ of \nhuman subjects; Leverag ing privacy output filters; Remov ing any personally"
|
182 |
+
- "Data quality; Model architecture (e.g., convolutional neural network, transformers,\
|
183 |
+
\ etc.); Optimizatio n objectives; Training algorithms; RLHF \napproaches; Fine\
|
184 |
+
\ -tuning or retrieval- augmented generation approaches; \nEvaluation data; Ethical\
|
185 |
+
\ considerations; Legal and regulatory requirements. Information Integrity ;\
|
186 |
+
\ Harmful Bias \nand Homogenization \nAI Actor Tasks: AI Deployment, AI Impact\
|
187 |
+
\ Assessment, Domain Experts, End -Users, Operation and Monitoring, TEVV \n \n\
|
188 |
+
MEASURE 2.10: Privacy risk of the AI system – as identified in the MAP function\
|
189 |
+
\ – is examined and documented. \nAction ID Suggested Action GAI Risks \n\
|
190 |
+
MS-2.10- 001 Conduct AI red -teaming to assess issues such as: Outputting of\
|
191 |
+
\ training data"
|
192 |
+
model-index:
|
193 |
+
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
|
194 |
+
results:
|
195 |
+
- task:
|
196 |
+
type: information-retrieval
|
197 |
+
name: Information Retrieval
|
198 |
+
dataset:
|
199 |
+
name: Unknown
|
200 |
+
type: unknown
|
201 |
+
metrics:
|
202 |
+
- type: cosine_accuracy@1
|
203 |
+
value: 0.8
|
204 |
+
name: Cosine Accuracy@1
|
205 |
+
- type: cosine_accuracy@3
|
206 |
+
value: 0.99
|
207 |
+
name: Cosine Accuracy@3
|
208 |
+
- type: cosine_accuracy@5
|
209 |
+
value: 0.99
|
210 |
+
name: Cosine Accuracy@5
|
211 |
+
- type: cosine_accuracy@10
|
212 |
+
value: 1.0
|
213 |
+
name: Cosine Accuracy@10
|
214 |
+
- type: cosine_precision@1
|
215 |
+
value: 0.8
|
216 |
+
name: Cosine Precision@1
|
217 |
+
- type: cosine_precision@3
|
218 |
+
value: 0.33000000000000007
|
219 |
+
name: Cosine Precision@3
|
220 |
+
- type: cosine_precision@5
|
221 |
+
value: 0.19799999999999998
|
222 |
+
name: Cosine Precision@5
|
223 |
+
- type: cosine_precision@10
|
224 |
+
value: 0.09999999999999998
|
225 |
+
name: Cosine Precision@10
|
226 |
+
- type: cosine_recall@1
|
227 |
+
value: 0.8
|
228 |
+
name: Cosine Recall@1
|
229 |
+
- type: cosine_recall@3
|
230 |
+
value: 0.99
|
231 |
+
name: Cosine Recall@3
|
232 |
+
- type: cosine_recall@5
|
233 |
+
value: 0.99
|
234 |
+
name: Cosine Recall@5
|
235 |
+
- type: cosine_recall@10
|
236 |
+
value: 1.0
|
237 |
+
name: Cosine Recall@10
|
238 |
+
- type: cosine_ndcg@10
|
239 |
+
value: 0.9195108324425135
|
240 |
+
name: Cosine Ndcg@10
|
241 |
+
- type: cosine_mrr@10
|
242 |
+
value: 0.8916666666666667
|
243 |
+
name: Cosine Mrr@10
|
244 |
+
- type: cosine_map@100
|
245 |
+
value: 0.8916666666666666
|
246 |
+
name: Cosine Map@100
|
247 |
+
- type: dot_accuracy@1
|
248 |
+
value: 0.8
|
249 |
+
name: Dot Accuracy@1
|
250 |
+
- type: dot_accuracy@3
|
251 |
+
value: 0.99
|
252 |
+
name: Dot Accuracy@3
|
253 |
+
- type: dot_accuracy@5
|
254 |
+
value: 0.99
|
255 |
+
name: Dot Accuracy@5
|
256 |
+
- type: dot_accuracy@10
|
257 |
+
value: 1.0
|
258 |
+
name: Dot Accuracy@10
|
259 |
+
- type: dot_precision@1
|
260 |
+
value: 0.8
|
261 |
+
name: Dot Precision@1
|
262 |
+
- type: dot_precision@3
|
263 |
+
value: 0.33000000000000007
|
264 |
+
name: Dot Precision@3
|
265 |
+
- type: dot_precision@5
|
266 |
+
value: 0.19799999999999998
|
267 |
+
name: Dot Precision@5
|
268 |
+
- type: dot_precision@10
|
269 |
+
value: 0.09999999999999998
|
270 |
+
name: Dot Precision@10
|
271 |
+
- type: dot_recall@1
|
272 |
+
value: 0.8
|
273 |
+
name: Dot Recall@1
|
274 |
+
- type: dot_recall@3
|
275 |
+
value: 0.99
|
276 |
+
name: Dot Recall@3
|
277 |
+
- type: dot_recall@5
|
278 |
+
value: 0.99
|
279 |
+
name: Dot Recall@5
|
280 |
+
- type: dot_recall@10
|
281 |
+
value: 1.0
|
282 |
+
name: Dot Recall@10
|
283 |
+
- type: dot_ndcg@10
|
284 |
+
value: 0.9195108324425135
|
285 |
+
name: Dot Ndcg@10
|
286 |
+
- type: dot_mrr@10
|
287 |
+
value: 0.8916666666666667
|
288 |
+
name: Dot Mrr@10
|
289 |
+
- type: dot_map@100
|
290 |
+
value: 0.8916666666666666
|
291 |
+
name: Dot Map@100
|
292 |
+
---
|
293 |
+
|
294 |
+
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
|
295 |
+
|
296 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
297 |
+
|
298 |
+
## Model Details
|
299 |
+
|
300 |
+
### Model Description
|
301 |
+
- **Model Type:** Sentence Transformer
|
302 |
+
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
|
303 |
+
- **Maximum Sequence Length:** 512 tokens
|
304 |
+
- **Output Dimensionality:** 768 tokens
|
305 |
+
- **Similarity Function:** Cosine Similarity
|
306 |
+
<!-- - **Training Dataset:** Unknown -->
|
307 |
+
<!-- - **Language:** Unknown -->
|
308 |
+
<!-- - **License:** Unknown -->
|
309 |
+
|
310 |
+
### Model Sources
|
311 |
+
|
312 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
313 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
314 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
315 |
+
|
316 |
+
### Full Model Architecture
|
317 |
+
|
318 |
+
```
|
319 |
+
SentenceTransformer(
|
320 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
321 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
322 |
+
(2): Normalize()
|
323 |
+
)
|
324 |
+
```
|
325 |
+
|
326 |
+
## Usage
|
327 |
+
|
328 |
+
### Direct Usage (Sentence Transformers)
|
329 |
+
|
330 |
+
First install the Sentence Transformers library:
|
331 |
+
|
332 |
+
```bash
|
333 |
+
pip install -U sentence-transformers
|
334 |
+
```
|
335 |
+
|
336 |
+
Then you can load this model and run inference.
|
337 |
+
```python
|
338 |
+
from sentence_transformers import SentenceTransformer
|
339 |
+
|
340 |
+
# Download from the 🤗 Hub
|
341 |
+
model = SentenceTransformer("XicoC/midterm-finetuned-arctic")
|
342 |
+
# Run inference
|
343 |
+
sentences = [
|
344 |
+
'What are the key components involved in ensuring data quality and ethical considerations in AI systems?',
|
345 |
+
'Data quality; Model architecture (e.g., convolutional neural network, transformers, etc.); Optimizatio n objectives; Training algorithms; RLHF \napproaches; Fine -tuning or retrieval- augmented generation approaches; \nEvaluation data; Ethical considerations; Legal and regulatory requirements. Information Integrity ; Harmful Bias \nand Homogenization \nAI Actor Tasks: AI Deployment, AI Impact Assessment, Domain Experts, End -Users, Operation and Monitoring, TEVV \n \nMEASURE 2.10: Privacy risk of the AI system – as identified in the MAP function – is examined and documented. \nAction ID Suggested Action GAI Risks \nMS-2.10- 001 Conduct AI red -teaming to assess issues such as: Outputting of training data',
|
346 |
+
'30 MEASURE 2.2: Evaluations involving human subjects meet applicable requirements (including human subject protection) and are \nrepresentative of the relevant population. \nAction ID Suggested Action GAI Risks \nMS-2.2-001 Assess and manage statistical biases related to GAI content provenance through \ntechniques such as re -sampling, re -weighting, or adversarial training. Information Integrity ; Information \nSecurity ; Harmful Bias and \nHomogenization \nMS-2.2-002 Document how content provenance data is tracked and how that data interact s \nwith privacy and security . Consider : Anonymiz ing data to protect the privacy of \nhuman subjects; Leverag ing privacy output filters; Remov ing any personally',
|
347 |
+
]
|
348 |
+
embeddings = model.encode(sentences)
|
349 |
+
print(embeddings.shape)
|
350 |
+
# [3, 768]
|
351 |
+
|
352 |
+
# Get the similarity scores for the embeddings
|
353 |
+
similarities = model.similarity(embeddings, embeddings)
|
354 |
+
print(similarities.shape)
|
355 |
+
# [3, 3]
|
356 |
+
```
|
357 |
+
|
358 |
+
<!--
|
359 |
+
### Direct Usage (Transformers)
|
360 |
+
|
361 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
362 |
+
|
363 |
+
</details>
|
364 |
+
-->
|
365 |
+
|
366 |
+
<!--
|
367 |
+
### Downstream Usage (Sentence Transformers)
|
368 |
+
|
369 |
+
You can finetune this model on your own dataset.
|
370 |
+
|
371 |
+
<details><summary>Click to expand</summary>
|
372 |
+
|
373 |
+
</details>
|
374 |
+
-->
|
375 |
+
|
376 |
+
<!--
|
377 |
+
### Out-of-Scope Use
|
378 |
+
|
379 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
380 |
+
-->
|
381 |
+
|
382 |
+
## Evaluation
|
383 |
+
|
384 |
+
### Metrics
|
385 |
+
|
386 |
+
#### Information Retrieval
|
387 |
+
|
388 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
389 |
+
|
390 |
+
| Metric | Value |
|
391 |
+
|:--------------------|:-----------|
|
392 |
+
| cosine_accuracy@1 | 0.8 |
|
393 |
+
| cosine_accuracy@3 | 0.99 |
|
394 |
+
| cosine_accuracy@5 | 0.99 |
|
395 |
+
| cosine_accuracy@10 | 1.0 |
|
396 |
+
| cosine_precision@1 | 0.8 |
|
397 |
+
| cosine_precision@3 | 0.33 |
|
398 |
+
| cosine_precision@5 | 0.198 |
|
399 |
+
| cosine_precision@10 | 0.1 |
|
400 |
+
| cosine_recall@1 | 0.8 |
|
401 |
+
| cosine_recall@3 | 0.99 |
|
402 |
+
| cosine_recall@5 | 0.99 |
|
403 |
+
| cosine_recall@10 | 1.0 |
|
404 |
+
| cosine_ndcg@10 | 0.9195 |
|
405 |
+
| cosine_mrr@10 | 0.8917 |
|
406 |
+
| **cosine_map@100** | **0.8917** |
|
407 |
+
| dot_accuracy@1 | 0.8 |
|
408 |
+
| dot_accuracy@3 | 0.99 |
|
409 |
+
| dot_accuracy@5 | 0.99 |
|
410 |
+
| dot_accuracy@10 | 1.0 |
|
411 |
+
| dot_precision@1 | 0.8 |
|
412 |
+
| dot_precision@3 | 0.33 |
|
413 |
+
| dot_precision@5 | 0.198 |
|
414 |
+
| dot_precision@10 | 0.1 |
|
415 |
+
| dot_recall@1 | 0.8 |
|
416 |
+
| dot_recall@3 | 0.99 |
|
417 |
+
| dot_recall@5 | 0.99 |
|
418 |
+
| dot_recall@10 | 1.0 |
|
419 |
+
| dot_ndcg@10 | 0.9195 |
|
420 |
+
| dot_mrr@10 | 0.8917 |
|
421 |
+
| dot_map@100 | 0.8917 |
|
422 |
+
|
423 |
+
<!--
|
424 |
+
## Bias, Risks and Limitations
|
425 |
+
|
426 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
427 |
+
-->
|
428 |
+
|
429 |
+
<!--
|
430 |
+
### Recommendations
|
431 |
+
|
432 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
433 |
+
-->
|
434 |
+
|
435 |
+
## Training Details
|
436 |
+
|
437 |
+
### Training Dataset
|
438 |
+
|
439 |
+
#### Unnamed Dataset
|
440 |
+
|
441 |
+
|
442 |
+
* Size: 600 training samples
|
443 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
444 |
+
* Approximate statistics based on the first 600 samples:
|
445 |
+
| | sentence_0 | sentence_1 |
|
446 |
+
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
447 |
+
| type | string | string |
|
448 |
+
| details | <ul><li>min: 13 tokens</li><li>mean: 21.67 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 132.86 tokens</li><li>max: 512 tokens</li></ul> |
|
449 |
+
* Samples:
|
450 |
+
| sentence_0 | sentence_1 |
|
451 |
+
|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
452 |
+
| <code>What is the title of the NIST publication related to Artificial Intelligence Risk Management?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600 -1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600 -1</code> |
|
453 |
+
| <code>Where can the NIST AI 600 -1 publication be accessed for free?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600 -1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600 -1</code> |
|
454 |
+
| <code>What is the title of the publication released by NIST in July 2024 regarding artificial intelligence?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600 -1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600 -1 <br> <br>July 2024 <br> <br> <br> <br> <br>U.S. Department of Commerce <br>Gina M. Raimondo, Secretary <br>National Institute of Standards and Technology <br>Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology</code> |
|
455 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
456 |
+
```json
|
457 |
+
{
|
458 |
+
"loss": "MultipleNegativesRankingLoss",
|
459 |
+
"matryoshka_dims": [
|
460 |
+
768,
|
461 |
+
512,
|
462 |
+
256,
|
463 |
+
128,
|
464 |
+
64
|
465 |
+
],
|
466 |
+
"matryoshka_weights": [
|
467 |
+
1,
|
468 |
+
1,
|
469 |
+
1,
|
470 |
+
1,
|
471 |
+
1
|
472 |
+
],
|
473 |
+
"n_dims_per_step": -1
|
474 |
+
}
|
475 |
+
```
|
476 |
+
|
477 |
+
### Training Hyperparameters
|
478 |
+
#### Non-Default Hyperparameters
|
479 |
+
|
480 |
+
- `eval_strategy`: steps
|
481 |
+
- `per_device_train_batch_size`: 20
|
482 |
+
- `per_device_eval_batch_size`: 20
|
483 |
+
- `num_train_epochs`: 5
|
484 |
+
- `multi_dataset_batch_sampler`: round_robin
|
485 |
+
|
486 |
+
#### All Hyperparameters
|
487 |
+
<details><summary>Click to expand</summary>
|
488 |
+
|
489 |
+
- `overwrite_output_dir`: False
|
490 |
+
- `do_predict`: False
|
491 |
+
- `eval_strategy`: steps
|
492 |
+
- `prediction_loss_only`: True
|
493 |
+
- `per_device_train_batch_size`: 20
|
494 |
+
- `per_device_eval_batch_size`: 20
|
495 |
+
- `per_gpu_train_batch_size`: None
|
496 |
+
- `per_gpu_eval_batch_size`: None
|
497 |
+
- `gradient_accumulation_steps`: 1
|
498 |
+
- `eval_accumulation_steps`: None
|
499 |
+
- `torch_empty_cache_steps`: None
|
500 |
+
- `learning_rate`: 5e-05
|
501 |
+
- `weight_decay`: 0.0
|
502 |
+
- `adam_beta1`: 0.9
|
503 |
+
- `adam_beta2`: 0.999
|
504 |
+
- `adam_epsilon`: 1e-08
|
505 |
+
- `max_grad_norm`: 1
|
506 |
+
- `num_train_epochs`: 5
|
507 |
+
- `max_steps`: -1
|
508 |
+
- `lr_scheduler_type`: linear
|
509 |
+
- `lr_scheduler_kwargs`: {}
|
510 |
+
- `warmup_ratio`: 0.0
|
511 |
+
- `warmup_steps`: 0
|
512 |
+
- `log_level`: passive
|
513 |
+
- `log_level_replica`: warning
|
514 |
+
- `log_on_each_node`: True
|
515 |
+
- `logging_nan_inf_filter`: True
|
516 |
+
- `save_safetensors`: True
|
517 |
+
- `save_on_each_node`: False
|
518 |
+
- `save_only_model`: False
|
519 |
+
- `restore_callback_states_from_checkpoint`: False
|
520 |
+
- `no_cuda`: False
|
521 |
+
- `use_cpu`: False
|
522 |
+
- `use_mps_device`: False
|
523 |
+
- `seed`: 42
|
524 |
+
- `data_seed`: None
|
525 |
+
- `jit_mode_eval`: False
|
526 |
+
- `use_ipex`: False
|
527 |
+
- `bf16`: False
|
528 |
+
- `fp16`: False
|
529 |
+
- `fp16_opt_level`: O1
|
530 |
+
- `half_precision_backend`: auto
|
531 |
+
- `bf16_full_eval`: False
|
532 |
+
- `fp16_full_eval`: False
|
533 |
+
- `tf32`: None
|
534 |
+
- `local_rank`: 0
|
535 |
+
- `ddp_backend`: None
|
536 |
+
- `tpu_num_cores`: None
|
537 |
+
- `tpu_metrics_debug`: False
|
538 |
+
- `debug`: []
|
539 |
+
- `dataloader_drop_last`: False
|
540 |
+
- `dataloader_num_workers`: 0
|
541 |
+
- `dataloader_prefetch_factor`: None
|
542 |
+
- `past_index`: -1
|
543 |
+
- `disable_tqdm`: False
|
544 |
+
- `remove_unused_columns`: True
|
545 |
+
- `label_names`: None
|
546 |
+
- `load_best_model_at_end`: False
|
547 |
+
- `ignore_data_skip`: False
|
548 |
+
- `fsdp`: []
|
549 |
+
- `fsdp_min_num_params`: 0
|
550 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
551 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
552 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
553 |
+
- `deepspeed`: None
|
554 |
+
- `label_smoothing_factor`: 0.0
|
555 |
+
- `optim`: adamw_torch
|
556 |
+
- `optim_args`: None
|
557 |
+
- `adafactor`: False
|
558 |
+
- `group_by_length`: False
|
559 |
+
- `length_column_name`: length
|
560 |
+
- `ddp_find_unused_parameters`: None
|
561 |
+
- `ddp_bucket_cap_mb`: None
|
562 |
+
- `ddp_broadcast_buffers`: False
|
563 |
+
- `dataloader_pin_memory`: True
|
564 |
+
- `dataloader_persistent_workers`: False
|
565 |
+
- `skip_memory_metrics`: True
|
566 |
+
- `use_legacy_prediction_loop`: False
|
567 |
+
- `push_to_hub`: False
|
568 |
+
- `resume_from_checkpoint`: None
|
569 |
+
- `hub_model_id`: None
|
570 |
+
- `hub_strategy`: every_save
|
571 |
+
- `hub_private_repo`: False
|
572 |
+
- `hub_always_push`: False
|
573 |
+
- `gradient_checkpointing`: False
|
574 |
+
- `gradient_checkpointing_kwargs`: None
|
575 |
+
- `include_inputs_for_metrics`: False
|
576 |
+
- `eval_do_concat_batches`: True
|
577 |
+
- `fp16_backend`: auto
|
578 |
+
- `push_to_hub_model_id`: None
|
579 |
+
- `push_to_hub_organization`: None
|
580 |
+
- `mp_parameters`:
|
581 |
+
- `auto_find_batch_size`: False
|
582 |
+
- `full_determinism`: False
|
583 |
+
- `torchdynamo`: None
|
584 |
+
- `ray_scope`: last
|
585 |
+
- `ddp_timeout`: 1800
|
586 |
+
- `torch_compile`: False
|
587 |
+
- `torch_compile_backend`: None
|
588 |
+
- `torch_compile_mode`: None
|
589 |
+
- `dispatch_batches`: None
|
590 |
+
- `split_batches`: None
|
591 |
+
- `include_tokens_per_second`: False
|
592 |
+
- `include_num_input_tokens_seen`: False
|
593 |
+
- `neftune_noise_alpha`: None
|
594 |
+
- `optim_target_modules`: None
|
595 |
+
- `batch_eval_metrics`: False
|
596 |
+
- `eval_on_start`: False
|
597 |
+
- `eval_use_gather_object`: False
|
598 |
+
- `batch_sampler`: batch_sampler
|
599 |
+
- `multi_dataset_batch_sampler`: round_robin
|
600 |
+
|
601 |
+
</details>
|
602 |
+
|
603 |
+
### Training Logs
|
604 |
+
| Epoch | Step | cosine_map@100 |
|
605 |
+
|:------:|:----:|:--------------:|
|
606 |
+
| 1.0 | 30 | 0.8722 |
|
607 |
+
| 1.6667 | 50 | 0.8817 |
|
608 |
+
| 2.0 | 60 | 0.8867 |
|
609 |
+
| 3.0 | 90 | 0.8867 |
|
610 |
+
| 3.3333 | 100 | 0.8917 |
|
611 |
+
|
612 |
+
|
613 |
+
### Framework Versions
|
614 |
+
- Python: 3.10.12
|
615 |
+
- Sentence Transformers: 3.1.0
|
616 |
+
- Transformers: 4.44.2
|
617 |
+
- PyTorch: 2.4.0+cu121
|
618 |
+
- Accelerate: 0.34.2
|
619 |
+
- Datasets: 2.19.2
|
620 |
+
- Tokenizers: 0.19.1
|
621 |
+
|
622 |
+
## Citation
|
623 |
+
|
624 |
+
### BibTeX
|
625 |
+
|
626 |
+
#### Sentence Transformers
|
627 |
+
```bibtex
|
628 |
+
@inproceedings{reimers-2019-sentence-bert,
|
629 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
630 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
631 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
632 |
+
month = "11",
|
633 |
+
year = "2019",
|
634 |
+
publisher = "Association for Computational Linguistics",
|
635 |
+
url = "https://arxiv.org/abs/1908.10084",
|
636 |
+
}
|
637 |
+
```
|
638 |
+
|
639 |
+
#### MatryoshkaLoss
|
640 |
+
```bibtex
|
641 |
+
@misc{kusupati2024matryoshka,
|
642 |
+
title={Matryoshka Representation Learning},
|
643 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
644 |
+
year={2024},
|
645 |
+
eprint={2205.13147},
|
646 |
+
archivePrefix={arXiv},
|
647 |
+
primaryClass={cs.LG}
|
648 |
+
}
|
649 |
+
```
|
650 |
+
|
651 |
+
#### MultipleNegativesRankingLoss
|
652 |
+
```bibtex
|
653 |
+
@misc{henderson2017efficient,
|
654 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
655 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
656 |
+
year={2017},
|
657 |
+
eprint={1705.00652},
|
658 |
+
archivePrefix={arXiv},
|
659 |
+
primaryClass={cs.CL}
|
660 |
+
}
|
661 |
+
```
|
662 |
+
|
663 |
+
<!--
|
664 |
+
## Glossary
|
665 |
+
|
666 |
+
*Clearly define terms in order to be accessible across audiences.*
|
667 |
+
-->
|
668 |
+
|
669 |
+
<!--
|
670 |
+
## Model Card Authors
|
671 |
+
|
672 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
673 |
+
-->
|
674 |
+
|
675 |
+
<!--
|
676 |
+
## Model Card Contact
|
677 |
+
|
678 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
679 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "midterm-finetuned_arctic",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.44.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"query": "Represent this sentence for searching relevant passages: "
|
9 |
+
},
|
10 |
+
"default_prompt_name": null,
|
11 |
+
"similarity_fn_name": null
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0023811e92eb44d32fdb9fe8bd88a6fd762711e7b567617175a836f424f844a
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 512,
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "BertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|