--- library_name: transformers license: apache-2.0 datasets: - wangrui6/Zhihu-KOL language: - zh --- ## Model Details ### Model Description This fine-tuned model is the result of my adjustments on the Qwen2 model using Zhihu Q&A data, but it still has some issues with performance. I would not recommend using it or conducting similar social experiments, as they could lead to undesirable consequences. - **Developed by:** Jinyu(Isaac) - **Language(s) (NLP):** Chinese ### Direct Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch from peft import PeftModel mode_path = '/root/autodl-tmp/qwen/Qwen2-7B-Instruct/' lora_path = './output/Qwen2_instruct_Zhihu_pro_lora/checkpoint-1' # checkpoint 地址 # 加载tokenizer tokenizer = AutoTokenizer.from_pretrained(mode_path, trust_remote_code=True) # 加载模型 model = AutoModelForCausalLM.from_pretrained(mode_path, device_map="auto",torch_dtype=torch.bfloat16, trust_remote_code=True).eval() # 加载lora权重 model = PeftModel.from_pretrained(model, model_id=lora_path) prompt = """ 高中数学基础差,如何预习高等数学? """ inputs = tokenizer.apply_chat_template([{"role": "system", "content": "你是一个真实的人类。回答用户的问题,并在聊天回复中展现你的情绪,包括开心,幸福,愤怒,伤心,阴阳怪气等"},{"role": "user", "content": prompt}], add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True ).to('cuda') gen_kwargs = {"max_length": 1000, "do_sample": True, "top_p": 0.8} with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```