XiangJinYu commited on
Commit
182ce4c
1 Parent(s): dfc208b

Upload 31 files

Browse files
README.md CHANGED
@@ -1,3 +1,51 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ ## Model Details
7
+
8
+ ### Model Description
9
+
10
+ <!-- Provide a longer summary of what this model is. -->
11
+
12
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
13
+
14
+ - **Developed by:** Isaac
15
+ - **Language(s) (NLP):** Chinese
16
+
17
+
18
+ ### Direct Use
19
+
20
+ ```python
21
+ from transformers import AutoModelForCausalLM, AutoTokenizer
22
+ import torch
23
+ from peft import PeftModel
24
+
25
+ mode_path = '/root/autodl-tmp/qwen/Qwen2-7B-Instruct/'
26
+ lora_path = './output/Qwen2_instruct_Zhihu_pro_lora/checkpoint-1' # checkpoint 地址
27
+
28
+ # 加载tokenizer
29
+ tokenizer = AutoTokenizer.from_pretrained(mode_path, trust_remote_code=True)
30
+
31
+ # 加载模型
32
+ model = AutoModelForCausalLM.from_pretrained(mode_path, device_map="auto",torch_dtype=torch.bfloat16, trust_remote_code=True).eval()
33
+
34
+ # 加载lora权重
35
+ model = PeftModel.from_pretrained(model, model_id=lora_path)
36
+
37
+ prompt = """
38
+ 高中数学基础差,如何预习高等数学?
39
+ """
40
+ inputs = tokenizer.apply_chat_template([{"role": "system", "content": "你是一个真实的人类。回答用户的问题,并在聊天回复中展现你的情绪,包括开心,幸福,愤怒,伤心,阴阳怪气等"},{"role": "user", "content": prompt}],
41
+ add_generation_prompt=True,
42
+ tokenize=True,
43
+ return_tensors="pt",
44
+ return_dict=True
45
+ ).to('cuda')
46
+ gen_kwargs = {"max_length": 1000, "do_sample": True, "top_p": 0.8}
47
+ with torch.no_grad():
48
+ outputs = model.generate(**inputs, **gen_kwargs)
49
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
50
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
51
+ ```
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 3584,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 18944,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 28,
16
+ "num_hidden_layers": 28,
17
+ "num_key_value_heads": 4,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_theta": 1000000.0,
20
+ "sliding_window": 131072,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.41.2",
24
+ "use_cache": true,
25
+ "use_sliding_window": false,
26
+ "vocab_size": 152064
27
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework":"Pytorch","task":"text-generation"}
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "pad_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_p": 0.8,
12
+ "top_k": 20,
13
+ "transformers_version": "4.37.0"
14
+ }
output/checkpoint-1/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /root/autodl-tmp/qwen/Qwen2-7B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
output/checkpoint-1/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/root/autodl-tmp/qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "q_proj",
28
+ "down_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
output/checkpoint-1/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a45a8ca9f73d3a532c48254424536618547fd524212edb32846aac402a95156d
3
+ size 40422208
output/checkpoint-1/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16c448b835f10922dad12cfde22023bc1ccefc80c49a645d64a47d7380a548f7
3
+ size 81069930
output/checkpoint-1/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d104008761f01c44d9925ffd5c66f16ac27b4d071ffd0e0bffb220dede551242
3
+ size 14244
output/checkpoint-1/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21d8670da4d13413b7098b968549c6d1f829f51ed2092df77abdb87d529e62f2
3
+ size 1064
output/checkpoint-1/trainer_state.json ADDED
@@ -0,0 +1,2133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.093095281472035,
5
+ "eval_steps": 500,
6
+ "global_step": 3000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0036436509382401167,
13
+ "grad_norm": 0.6875,
14
+ "learning_rate": 9.987852283770651e-05,
15
+ "loss": 3.4902,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.007287301876480233,
20
+ "grad_norm": 0.66796875,
21
+ "learning_rate": 9.975704567541302e-05,
22
+ "loss": 3.3432,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.01093095281472035,
27
+ "grad_norm": 0.5546875,
28
+ "learning_rate": 9.963556851311953e-05,
29
+ "loss": 3.2381,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.014574603752960467,
34
+ "grad_norm": 0.65234375,
35
+ "learning_rate": 9.951409135082604e-05,
36
+ "loss": 3.2931,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.018218254691200583,
41
+ "grad_norm": 0.6328125,
42
+ "learning_rate": 9.939261418853257e-05,
43
+ "loss": 3.3235,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.0218619056294407,
48
+ "grad_norm": 0.64453125,
49
+ "learning_rate": 9.927113702623908e-05,
50
+ "loss": 3.2988,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.025505556567680818,
55
+ "grad_norm": 0.59765625,
56
+ "learning_rate": 9.914965986394558e-05,
57
+ "loss": 3.2927,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.029149207505920934,
62
+ "grad_norm": 0.57421875,
63
+ "learning_rate": 9.90281827016521e-05,
64
+ "loss": 3.275,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.03279285844416105,
69
+ "grad_norm": 0.640625,
70
+ "learning_rate": 9.89067055393586e-05,
71
+ "loss": 3.316,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.036436509382401165,
76
+ "grad_norm": 0.57421875,
77
+ "learning_rate": 9.878522837706513e-05,
78
+ "loss": 3.2611,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.04008016032064128,
83
+ "grad_norm": 0.51171875,
84
+ "learning_rate": 9.866375121477162e-05,
85
+ "loss": 3.268,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.0437238112588814,
90
+ "grad_norm": 0.703125,
91
+ "learning_rate": 9.854227405247813e-05,
92
+ "loss": 3.3032,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.04736746219712151,
97
+ "grad_norm": 0.5546875,
98
+ "learning_rate": 9.842079689018465e-05,
99
+ "loss": 3.3334,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.051011113135361635,
104
+ "grad_norm": 0.671875,
105
+ "learning_rate": 9.829931972789116e-05,
106
+ "loss": 3.1943,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.05465476407360175,
111
+ "grad_norm": 0.6171875,
112
+ "learning_rate": 9.817784256559767e-05,
113
+ "loss": 3.2574,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.05829841501184187,
118
+ "grad_norm": 0.66015625,
119
+ "learning_rate": 9.805636540330418e-05,
120
+ "loss": 3.3747,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.06194206595008198,
125
+ "grad_norm": 0.52734375,
126
+ "learning_rate": 9.793488824101069e-05,
127
+ "loss": 3.2992,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.0655857168883221,
132
+ "grad_norm": 0.50390625,
133
+ "learning_rate": 9.781341107871722e-05,
134
+ "loss": 3.2342,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.06922936782656222,
139
+ "grad_norm": 0.65234375,
140
+ "learning_rate": 9.769193391642371e-05,
141
+ "loss": 3.356,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.07287301876480233,
146
+ "grad_norm": 0.57421875,
147
+ "learning_rate": 9.757045675413022e-05,
148
+ "loss": 3.3618,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.07651666970304245,
153
+ "grad_norm": 0.58984375,
154
+ "learning_rate": 9.744897959183674e-05,
155
+ "loss": 3.2931,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.08016032064128256,
160
+ "grad_norm": 0.77734375,
161
+ "learning_rate": 9.732750242954325e-05,
162
+ "loss": 3.3246,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.08380397157952268,
167
+ "grad_norm": 0.5859375,
168
+ "learning_rate": 9.720602526724975e-05,
169
+ "loss": 3.3181,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.0874476225177628,
174
+ "grad_norm": 0.640625,
175
+ "learning_rate": 9.708454810495627e-05,
176
+ "loss": 3.2757,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.09109127345600292,
181
+ "grad_norm": 0.55859375,
182
+ "learning_rate": 9.696307094266278e-05,
183
+ "loss": 3.2753,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.09473492439424303,
188
+ "grad_norm": 0.58203125,
189
+ "learning_rate": 9.68415937803693e-05,
190
+ "loss": 3.3207,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.09837857533248315,
195
+ "grad_norm": 0.63671875,
196
+ "learning_rate": 9.67201166180758e-05,
197
+ "loss": 3.3035,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.10202222627072327,
202
+ "grad_norm": 0.578125,
203
+ "learning_rate": 9.659863945578231e-05,
204
+ "loss": 3.3025,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.10566587720896338,
209
+ "grad_norm": 0.5859375,
210
+ "learning_rate": 9.647716229348883e-05,
211
+ "loss": 3.2066,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.1093095281472035,
216
+ "grad_norm": 0.7109375,
217
+ "learning_rate": 9.635568513119534e-05,
218
+ "loss": 3.2757,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.11295317908544361,
223
+ "grad_norm": 0.609375,
224
+ "learning_rate": 9.623420796890185e-05,
225
+ "loss": 3.1904,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.11659683002368373,
230
+ "grad_norm": 0.60546875,
231
+ "learning_rate": 9.611273080660836e-05,
232
+ "loss": 3.1947,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.12024048096192384,
237
+ "grad_norm": 0.6171875,
238
+ "learning_rate": 9.599125364431487e-05,
239
+ "loss": 3.2016,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.12388413190016397,
244
+ "grad_norm": 0.640625,
245
+ "learning_rate": 9.58697764820214e-05,
246
+ "loss": 3.329,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.12752778283840407,
251
+ "grad_norm": 0.66796875,
252
+ "learning_rate": 9.574829931972789e-05,
253
+ "loss": 3.2483,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.1311714337766442,
258
+ "grad_norm": 0.57421875,
259
+ "learning_rate": 9.56268221574344e-05,
260
+ "loss": 3.2388,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.13481508471488432,
265
+ "grad_norm": 0.58984375,
266
+ "learning_rate": 9.550534499514092e-05,
267
+ "loss": 3.2722,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.13845873565312444,
272
+ "grad_norm": 0.58203125,
273
+ "learning_rate": 9.538386783284743e-05,
274
+ "loss": 3.2672,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.14210238659136454,
279
+ "grad_norm": 0.5234375,
280
+ "learning_rate": 9.526239067055394e-05,
281
+ "loss": 3.3378,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.14574603752960466,
286
+ "grad_norm": 0.55859375,
287
+ "learning_rate": 9.514091350826045e-05,
288
+ "loss": 3.2637,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.14938968846784478,
293
+ "grad_norm": 0.70703125,
294
+ "learning_rate": 9.501943634596696e-05,
295
+ "loss": 3.2879,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.1530333394060849,
300
+ "grad_norm": 0.6640625,
301
+ "learning_rate": 9.489795918367348e-05,
302
+ "loss": 3.2614,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.156676990344325,
307
+ "grad_norm": 0.625,
308
+ "learning_rate": 9.477648202137999e-05,
309
+ "loss": 3.2469,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.16032064128256512,
314
+ "grad_norm": 0.5703125,
315
+ "learning_rate": 9.465500485908649e-05,
316
+ "loss": 3.1614,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.16396429222080525,
321
+ "grad_norm": 0.59765625,
322
+ "learning_rate": 9.453352769679301e-05,
323
+ "loss": 3.2658,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.16760794315904537,
328
+ "grad_norm": 0.6953125,
329
+ "learning_rate": 9.441205053449952e-05,
330
+ "loss": 3.3253,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.1712515940972855,
335
+ "grad_norm": 0.67578125,
336
+ "learning_rate": 9.429057337220603e-05,
337
+ "loss": 3.2311,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.1748952450355256,
342
+ "grad_norm": 0.625,
343
+ "learning_rate": 9.416909620991254e-05,
344
+ "loss": 3.3117,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.1785388959737657,
349
+ "grad_norm": 0.6640625,
350
+ "learning_rate": 9.404761904761905e-05,
351
+ "loss": 3.3513,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.18218254691200583,
356
+ "grad_norm": 0.5703125,
357
+ "learning_rate": 9.392614188532556e-05,
358
+ "loss": 3.3071,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.18582619785024596,
363
+ "grad_norm": 0.5703125,
364
+ "learning_rate": 9.380466472303208e-05,
365
+ "loss": 3.3047,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.18946984878848605,
370
+ "grad_norm": 0.58984375,
371
+ "learning_rate": 9.368318756073858e-05,
372
+ "loss": 3.1964,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.19311349972672617,
377
+ "grad_norm": 0.57421875,
378
+ "learning_rate": 9.35617103984451e-05,
379
+ "loss": 3.2459,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.1967571506649663,
384
+ "grad_norm": 0.62109375,
385
+ "learning_rate": 9.344023323615161e-05,
386
+ "loss": 3.205,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.20040080160320642,
391
+ "grad_norm": 0.66015625,
392
+ "learning_rate": 9.331875607385812e-05,
393
+ "loss": 3.2856,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.20404445254144654,
398
+ "grad_norm": 0.52734375,
399
+ "learning_rate": 9.319727891156463e-05,
400
+ "loss": 3.185,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.20768810347968664,
405
+ "grad_norm": 0.5546875,
406
+ "learning_rate": 9.307580174927114e-05,
407
+ "loss": 3.3071,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.21133175441792676,
412
+ "grad_norm": 0.63671875,
413
+ "learning_rate": 9.295432458697765e-05,
414
+ "loss": 3.2363,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.21497540535616688,
419
+ "grad_norm": 0.5625,
420
+ "learning_rate": 9.283284742468417e-05,
421
+ "loss": 3.2697,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.218619056294407,
426
+ "grad_norm": 0.56640625,
427
+ "learning_rate": 9.271137026239067e-05,
428
+ "loss": 3.3037,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.2222627072326471,
433
+ "grad_norm": 0.53125,
434
+ "learning_rate": 9.258989310009719e-05,
435
+ "loss": 3.2371,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.22590635817088722,
440
+ "grad_norm": 0.61328125,
441
+ "learning_rate": 9.24684159378037e-05,
442
+ "loss": 3.3367,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.22955000910912735,
447
+ "grad_norm": 0.5703125,
448
+ "learning_rate": 9.234693877551021e-05,
449
+ "loss": 3.2109,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.23319366004736747,
454
+ "grad_norm": 0.59375,
455
+ "learning_rate": 9.222546161321672e-05,
456
+ "loss": 3.2374,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.2368373109856076,
461
+ "grad_norm": 0.6875,
462
+ "learning_rate": 9.210398445092323e-05,
463
+ "loss": 3.3066,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.24048096192384769,
468
+ "grad_norm": 0.6484375,
469
+ "learning_rate": 9.198250728862974e-05,
470
+ "loss": 3.2635,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.2441246128620878,
475
+ "grad_norm": 0.60546875,
476
+ "learning_rate": 9.186103012633626e-05,
477
+ "loss": 3.26,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.24776826380032793,
482
+ "grad_norm": 0.65234375,
483
+ "learning_rate": 9.173955296404276e-05,
484
+ "loss": 3.2641,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.25141191473856805,
489
+ "grad_norm": 0.6015625,
490
+ "learning_rate": 9.161807580174927e-05,
491
+ "loss": 3.2907,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.25505556567680815,
496
+ "grad_norm": 0.54296875,
497
+ "learning_rate": 9.149659863945579e-05,
498
+ "loss": 3.2567,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.2586992166150483,
503
+ "grad_norm": 0.62890625,
504
+ "learning_rate": 9.13751214771623e-05,
505
+ "loss": 3.2838,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.2623428675532884,
510
+ "grad_norm": 0.546875,
511
+ "learning_rate": 9.125364431486881e-05,
512
+ "loss": 3.2969,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.2659865184915285,
517
+ "grad_norm": 0.6328125,
518
+ "learning_rate": 9.113216715257532e-05,
519
+ "loss": 3.2212,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.26963016942976864,
524
+ "grad_norm": 0.6328125,
525
+ "learning_rate": 9.101068999028183e-05,
526
+ "loss": 3.212,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.27327382036800874,
531
+ "grad_norm": 0.5859375,
532
+ "learning_rate": 9.088921282798835e-05,
533
+ "loss": 3.3488,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.2769174713062489,
538
+ "grad_norm": 0.546875,
539
+ "learning_rate": 9.076773566569486e-05,
540
+ "loss": 3.2143,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.280561122244489,
545
+ "grad_norm": 0.56640625,
546
+ "learning_rate": 9.064625850340136e-05,
547
+ "loss": 3.2518,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.2842047731827291,
552
+ "grad_norm": 0.578125,
553
+ "learning_rate": 9.052478134110788e-05,
554
+ "loss": 3.2638,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.2878484241209692,
559
+ "grad_norm": 0.58203125,
560
+ "learning_rate": 9.040330417881439e-05,
561
+ "loss": 3.2584,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.2914920750592093,
566
+ "grad_norm": 0.62890625,
567
+ "learning_rate": 9.02818270165209e-05,
568
+ "loss": 3.2841,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.29513572599744947,
573
+ "grad_norm": 0.55078125,
574
+ "learning_rate": 9.01603498542274e-05,
575
+ "loss": 3.261,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.29877937693568957,
580
+ "grad_norm": 0.6171875,
581
+ "learning_rate": 9.003887269193392e-05,
582
+ "loss": 3.2954,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.30242302787392966,
587
+ "grad_norm": 0.54296875,
588
+ "learning_rate": 8.991739552964044e-05,
589
+ "loss": 3.2337,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.3060666788121698,
594
+ "grad_norm": 0.6171875,
595
+ "learning_rate": 8.979591836734695e-05,
596
+ "loss": 3.2881,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.3097103297504099,
601
+ "grad_norm": 0.5546875,
602
+ "learning_rate": 8.967444120505344e-05,
603
+ "loss": 3.3519,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.31335398068865,
608
+ "grad_norm": 0.5859375,
609
+ "learning_rate": 8.955296404275997e-05,
610
+ "loss": 3.3147,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.31699763162689015,
615
+ "grad_norm": 0.62890625,
616
+ "learning_rate": 8.943148688046648e-05,
617
+ "loss": 3.2304,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.32064128256513025,
622
+ "grad_norm": 0.60546875,
623
+ "learning_rate": 8.931000971817299e-05,
624
+ "loss": 3.2526,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.3242849335033704,
629
+ "grad_norm": 0.6640625,
630
+ "learning_rate": 8.91885325558795e-05,
631
+ "loss": 3.309,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.3279285844416105,
636
+ "grad_norm": 0.6484375,
637
+ "learning_rate": 8.9067055393586e-05,
638
+ "loss": 3.2513,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.3315722353798506,
643
+ "grad_norm": 0.5703125,
644
+ "learning_rate": 8.894557823129253e-05,
645
+ "loss": 3.2135,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.33521588631809074,
650
+ "grad_norm": 0.64453125,
651
+ "learning_rate": 8.882410106899904e-05,
652
+ "loss": 3.3048,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.33885953725633083,
657
+ "grad_norm": 0.6015625,
658
+ "learning_rate": 8.870262390670553e-05,
659
+ "loss": 3.3047,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.342503188194571,
664
+ "grad_norm": 0.6015625,
665
+ "learning_rate": 8.858114674441206e-05,
666
+ "loss": 3.2616,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.3461468391328111,
671
+ "grad_norm": 0.5859375,
672
+ "learning_rate": 8.845966958211857e-05,
673
+ "loss": 3.2697,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.3497904900710512,
678
+ "grad_norm": 0.72265625,
679
+ "learning_rate": 8.833819241982508e-05,
680
+ "loss": 3.2395,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.3534341410092913,
685
+ "grad_norm": 0.61328125,
686
+ "learning_rate": 8.821671525753159e-05,
687
+ "loss": 3.2137,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.3570777919475314,
692
+ "grad_norm": 0.625,
693
+ "learning_rate": 8.80952380952381e-05,
694
+ "loss": 3.2872,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.36072144288577157,
699
+ "grad_norm": 0.5859375,
700
+ "learning_rate": 8.797376093294462e-05,
701
+ "loss": 3.2682,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.36436509382401167,
706
+ "grad_norm": 0.5390625,
707
+ "learning_rate": 8.785228377065113e-05,
708
+ "loss": 3.204,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.36800874476225176,
713
+ "grad_norm": 0.71875,
714
+ "learning_rate": 8.773080660835762e-05,
715
+ "loss": 3.2472,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.3716523957004919,
720
+ "grad_norm": 0.609375,
721
+ "learning_rate": 8.760932944606415e-05,
722
+ "loss": 3.2638,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.375296046638732,
727
+ "grad_norm": 0.60546875,
728
+ "learning_rate": 8.748785228377066e-05,
729
+ "loss": 3.2803,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.3789396975769721,
734
+ "grad_norm": 0.66796875,
735
+ "learning_rate": 8.736637512147716e-05,
736
+ "loss": 3.273,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.38258334851521225,
741
+ "grad_norm": 0.65625,
742
+ "learning_rate": 8.724489795918367e-05,
743
+ "loss": 3.2854,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.38622699945345235,
748
+ "grad_norm": 0.640625,
749
+ "learning_rate": 8.712342079689018e-05,
750
+ "loss": 3.2373,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.3898706503916925,
755
+ "grad_norm": 0.55859375,
756
+ "learning_rate": 8.700194363459671e-05,
757
+ "loss": 3.2259,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.3935143013299326,
762
+ "grad_norm": 0.5078125,
763
+ "learning_rate": 8.688046647230322e-05,
764
+ "loss": 3.2402,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.3971579522681727,
769
+ "grad_norm": 0.61328125,
770
+ "learning_rate": 8.675898931000973e-05,
771
+ "loss": 3.2379,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.40080160320641284,
776
+ "grad_norm": 0.59375,
777
+ "learning_rate": 8.663751214771624e-05,
778
+ "loss": 3.2564,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.40444525414465293,
783
+ "grad_norm": 0.69921875,
784
+ "learning_rate": 8.651603498542274e-05,
785
+ "loss": 3.2342,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.4080889050828931,
790
+ "grad_norm": 0.53125,
791
+ "learning_rate": 8.639455782312925e-05,
792
+ "loss": 3.3336,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.4117325560211332,
797
+ "grad_norm": 0.63671875,
798
+ "learning_rate": 8.627308066083576e-05,
799
+ "loss": 3.2684,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.4153762069593733,
804
+ "grad_norm": 0.61328125,
805
+ "learning_rate": 8.615160349854227e-05,
806
+ "loss": 3.2581,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.4190198578976134,
811
+ "grad_norm": 0.50390625,
812
+ "learning_rate": 8.603012633624878e-05,
813
+ "loss": 3.3428,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.4226635088358535,
818
+ "grad_norm": 0.58203125,
819
+ "learning_rate": 8.59086491739553e-05,
820
+ "loss": 3.2331,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.42630715977409367,
825
+ "grad_norm": 0.63671875,
826
+ "learning_rate": 8.578717201166182e-05,
827
+ "loss": 3.2203,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.42995081071233376,
832
+ "grad_norm": 0.57421875,
833
+ "learning_rate": 8.566569484936832e-05,
834
+ "loss": 3.248,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.43359446165057386,
839
+ "grad_norm": 0.6015625,
840
+ "learning_rate": 8.554421768707483e-05,
841
+ "loss": 3.3052,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.437238112588814,
846
+ "grad_norm": 0.5546875,
847
+ "learning_rate": 8.542274052478134e-05,
848
+ "loss": 3.2036,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.4408817635270541,
853
+ "grad_norm": 0.64453125,
854
+ "learning_rate": 8.530126336248787e-05,
855
+ "loss": 3.2199,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.4445254144652942,
860
+ "grad_norm": 0.68359375,
861
+ "learning_rate": 8.517978620019436e-05,
862
+ "loss": 3.2594,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.44816906540353435,
867
+ "grad_norm": 0.6953125,
868
+ "learning_rate": 8.505830903790087e-05,
869
+ "loss": 3.26,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.45181271634177445,
874
+ "grad_norm": 0.66015625,
875
+ "learning_rate": 8.49368318756074e-05,
876
+ "loss": 3.3623,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.4554563672800146,
881
+ "grad_norm": 0.7421875,
882
+ "learning_rate": 8.48153547133139e-05,
883
+ "loss": 3.2625,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.4591000182182547,
888
+ "grad_norm": 0.6875,
889
+ "learning_rate": 8.469387755102041e-05,
890
+ "loss": 3.2738,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.4627436691564948,
895
+ "grad_norm": 0.61328125,
896
+ "learning_rate": 8.457240038872692e-05,
897
+ "loss": 3.2688,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.46638732009473494,
902
+ "grad_norm": 0.609375,
903
+ "learning_rate": 8.445092322643343e-05,
904
+ "loss": 3.2392,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.47003097103297503,
909
+ "grad_norm": 0.56640625,
910
+ "learning_rate": 8.432944606413996e-05,
911
+ "loss": 3.2414,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.4736746219712152,
916
+ "grad_norm": 0.640625,
917
+ "learning_rate": 8.420796890184645e-05,
918
+ "loss": 3.2461,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.4773182729094553,
923
+ "grad_norm": 0.578125,
924
+ "learning_rate": 8.408649173955296e-05,
925
+ "loss": 3.3459,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.48096192384769537,
930
+ "grad_norm": 0.6953125,
931
+ "learning_rate": 8.396501457725948e-05,
932
+ "loss": 3.2631,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.4846055747859355,
937
+ "grad_norm": 0.59765625,
938
+ "learning_rate": 8.3843537414966e-05,
939
+ "loss": 3.2883,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.4882492257241756,
944
+ "grad_norm": 0.625,
945
+ "learning_rate": 8.372206025267249e-05,
946
+ "loss": 3.2085,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.49189287666241577,
951
+ "grad_norm": 0.6640625,
952
+ "learning_rate": 8.360058309037901e-05,
953
+ "loss": 3.3132,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.49553652760065586,
958
+ "grad_norm": 0.61328125,
959
+ "learning_rate": 8.347910592808552e-05,
960
+ "loss": 3.3076,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.49918017853889596,
965
+ "grad_norm": 0.7265625,
966
+ "learning_rate": 8.335762876579204e-05,
967
+ "loss": 3.3183,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.5028238294771361,
972
+ "grad_norm": 0.55859375,
973
+ "learning_rate": 8.323615160349854e-05,
974
+ "loss": 3.1761,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.5064674804153763,
979
+ "grad_norm": 0.60546875,
980
+ "learning_rate": 8.311467444120505e-05,
981
+ "loss": 3.2079,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 0.5101111313536163,
986
+ "grad_norm": 0.703125,
987
+ "learning_rate": 8.299319727891157e-05,
988
+ "loss": 3.2844,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 0.5137547822918564,
993
+ "grad_norm": 0.578125,
994
+ "learning_rate": 8.287172011661808e-05,
995
+ "loss": 3.2492,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 0.5173984332300966,
1000
+ "grad_norm": 0.6328125,
1001
+ "learning_rate": 8.275024295432459e-05,
1002
+ "loss": 3.2525,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 0.5210420841683366,
1007
+ "grad_norm": 0.5703125,
1008
+ "learning_rate": 8.26287657920311e-05,
1009
+ "loss": 3.2449,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 0.5246857351065768,
1014
+ "grad_norm": 0.54296875,
1015
+ "learning_rate": 8.250728862973761e-05,
1016
+ "loss": 3.2279,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 0.5283293860448169,
1021
+ "grad_norm": 0.5859375,
1022
+ "learning_rate": 8.238581146744413e-05,
1023
+ "loss": 3.2751,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 0.531973036983057,
1028
+ "grad_norm": 0.57421875,
1029
+ "learning_rate": 8.226433430515063e-05,
1030
+ "loss": 3.2404,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 0.5356166879212971,
1035
+ "grad_norm": 0.67578125,
1036
+ "learning_rate": 8.214285714285714e-05,
1037
+ "loss": 3.2911,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 0.5392603388595373,
1042
+ "grad_norm": 0.6796875,
1043
+ "learning_rate": 8.202137998056366e-05,
1044
+ "loss": 3.2637,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 0.5429039897977773,
1049
+ "grad_norm": 0.61328125,
1050
+ "learning_rate": 8.189990281827017e-05,
1051
+ "loss": 3.2004,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 0.5465476407360175,
1056
+ "grad_norm": 0.6875,
1057
+ "learning_rate": 8.177842565597668e-05,
1058
+ "loss": 3.2958,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 0.5501912916742576,
1063
+ "grad_norm": 0.609375,
1064
+ "learning_rate": 8.165694849368319e-05,
1065
+ "loss": 3.2371,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 0.5538349426124978,
1070
+ "grad_norm": 0.6171875,
1071
+ "learning_rate": 8.15354713313897e-05,
1072
+ "loss": 3.2798,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 0.5574785935507378,
1077
+ "grad_norm": 0.6953125,
1078
+ "learning_rate": 8.141399416909622e-05,
1079
+ "loss": 3.2608,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 0.561122244488978,
1084
+ "grad_norm": 0.62109375,
1085
+ "learning_rate": 8.129251700680273e-05,
1086
+ "loss": 3.2374,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 0.5647658954272181,
1091
+ "grad_norm": 0.625,
1092
+ "learning_rate": 8.117103984450923e-05,
1093
+ "loss": 3.189,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 0.5684095463654582,
1098
+ "grad_norm": 0.57421875,
1099
+ "learning_rate": 8.104956268221575e-05,
1100
+ "loss": 3.2008,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 0.5720531973036983,
1105
+ "grad_norm": 0.58984375,
1106
+ "learning_rate": 8.092808551992226e-05,
1107
+ "loss": 3.219,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 0.5756968482419385,
1112
+ "grad_norm": 0.58203125,
1113
+ "learning_rate": 8.080660835762877e-05,
1114
+ "loss": 3.2417,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 0.5793404991801785,
1119
+ "grad_norm": 0.63671875,
1120
+ "learning_rate": 8.068513119533528e-05,
1121
+ "loss": 3.236,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 0.5829841501184186,
1126
+ "grad_norm": 0.703125,
1127
+ "learning_rate": 8.056365403304179e-05,
1128
+ "loss": 3.3037,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 0.5866278010566588,
1133
+ "grad_norm": 0.703125,
1134
+ "learning_rate": 8.04421768707483e-05,
1135
+ "loss": 3.2412,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 0.5902714519948989,
1140
+ "grad_norm": 0.66796875,
1141
+ "learning_rate": 8.032069970845482e-05,
1142
+ "loss": 3.2293,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 0.593915102933139,
1147
+ "grad_norm": 0.6640625,
1148
+ "learning_rate": 8.019922254616132e-05,
1149
+ "loss": 3.2208,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 0.5975587538713791,
1154
+ "grad_norm": 0.671875,
1155
+ "learning_rate": 8.007774538386784e-05,
1156
+ "loss": 3.2251,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 0.6012024048096193,
1161
+ "grad_norm": 0.63671875,
1162
+ "learning_rate": 7.995626822157435e-05,
1163
+ "loss": 3.284,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 0.6048460557478593,
1168
+ "grad_norm": 0.6484375,
1169
+ "learning_rate": 7.983479105928086e-05,
1170
+ "loss": 3.2404,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 0.6084897066860995,
1175
+ "grad_norm": 0.69140625,
1176
+ "learning_rate": 7.971331389698737e-05,
1177
+ "loss": 3.3335,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 0.6121333576243396,
1182
+ "grad_norm": 0.59765625,
1183
+ "learning_rate": 7.959183673469388e-05,
1184
+ "loss": 3.276,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 0.6157770085625797,
1189
+ "grad_norm": 0.63671875,
1190
+ "learning_rate": 7.947035957240039e-05,
1191
+ "loss": 3.2263,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 0.6194206595008198,
1196
+ "grad_norm": 0.546875,
1197
+ "learning_rate": 7.934888241010691e-05,
1198
+ "loss": 3.1878,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 0.62306431043906,
1203
+ "grad_norm": 0.625,
1204
+ "learning_rate": 7.922740524781341e-05,
1205
+ "loss": 3.294,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 0.6267079613773,
1210
+ "grad_norm": 0.578125,
1211
+ "learning_rate": 7.910592808551993e-05,
1212
+ "loss": 3.2183,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 0.6303516123155402,
1217
+ "grad_norm": 0.69140625,
1218
+ "learning_rate": 7.898445092322644e-05,
1219
+ "loss": 3.1985,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 0.6339952632537803,
1224
+ "grad_norm": 0.74609375,
1225
+ "learning_rate": 7.886297376093295e-05,
1226
+ "loss": 3.1563,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 0.6376389141920205,
1231
+ "grad_norm": 0.6484375,
1232
+ "learning_rate": 7.874149659863946e-05,
1233
+ "loss": 3.2806,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 0.6412825651302605,
1238
+ "grad_norm": 0.6328125,
1239
+ "learning_rate": 7.862001943634597e-05,
1240
+ "loss": 3.2288,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 0.6449262160685006,
1245
+ "grad_norm": 0.5859375,
1246
+ "learning_rate": 7.849854227405248e-05,
1247
+ "loss": 3.2785,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 0.6485698670067408,
1252
+ "grad_norm": 0.6875,
1253
+ "learning_rate": 7.8377065111759e-05,
1254
+ "loss": 3.2952,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 0.6522135179449808,
1259
+ "grad_norm": 0.6796875,
1260
+ "learning_rate": 7.82555879494655e-05,
1261
+ "loss": 3.1665,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 0.655857168883221,
1266
+ "grad_norm": 0.6796875,
1267
+ "learning_rate": 7.8134110787172e-05,
1268
+ "loss": 3.1984,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 0.6595008198214611,
1273
+ "grad_norm": 0.625,
1274
+ "learning_rate": 7.801263362487853e-05,
1275
+ "loss": 3.2051,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 0.6631444707597012,
1280
+ "grad_norm": 0.6640625,
1281
+ "learning_rate": 7.789115646258504e-05,
1282
+ "loss": 3.2141,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 0.6667881216979413,
1287
+ "grad_norm": 0.59375,
1288
+ "learning_rate": 7.776967930029155e-05,
1289
+ "loss": 3.312,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 0.6704317726361815,
1294
+ "grad_norm": 0.65234375,
1295
+ "learning_rate": 7.764820213799806e-05,
1296
+ "loss": 3.2473,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 0.6740754235744215,
1301
+ "grad_norm": 0.61328125,
1302
+ "learning_rate": 7.752672497570457e-05,
1303
+ "loss": 3.2924,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 0.6777190745126617,
1308
+ "grad_norm": 0.71484375,
1309
+ "learning_rate": 7.740524781341109e-05,
1310
+ "loss": 3.2799,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 0.6813627254509018,
1315
+ "grad_norm": 0.55078125,
1316
+ "learning_rate": 7.72837706511176e-05,
1317
+ "loss": 3.2251,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 0.685006376389142,
1322
+ "grad_norm": 0.70703125,
1323
+ "learning_rate": 7.71622934888241e-05,
1324
+ "loss": 3.209,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 0.688650027327382,
1329
+ "grad_norm": 0.63671875,
1330
+ "learning_rate": 7.704081632653062e-05,
1331
+ "loss": 3.2312,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 0.6922936782656222,
1336
+ "grad_norm": 0.6328125,
1337
+ "learning_rate": 7.691933916423713e-05,
1338
+ "loss": 3.2487,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 0.6959373292038623,
1343
+ "grad_norm": 0.5703125,
1344
+ "learning_rate": 7.679786200194364e-05,
1345
+ "loss": 3.3157,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 0.6995809801421023,
1350
+ "grad_norm": 0.63671875,
1351
+ "learning_rate": 7.667638483965015e-05,
1352
+ "loss": 3.299,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 0.7032246310803425,
1357
+ "grad_norm": 0.69140625,
1358
+ "learning_rate": 7.655490767735666e-05,
1359
+ "loss": 3.2755,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 0.7068682820185826,
1364
+ "grad_norm": 0.625,
1365
+ "learning_rate": 7.643343051506318e-05,
1366
+ "loss": 3.317,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 0.7105119329568227,
1371
+ "grad_norm": 0.55078125,
1372
+ "learning_rate": 7.631195335276969e-05,
1373
+ "loss": 3.1871,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 0.7141555838950628,
1378
+ "grad_norm": 0.74609375,
1379
+ "learning_rate": 7.619047619047618e-05,
1380
+ "loss": 3.2405,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 0.717799234833303,
1385
+ "grad_norm": 0.69921875,
1386
+ "learning_rate": 7.606899902818271e-05,
1387
+ "loss": 3.3068,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 0.7214428857715431,
1392
+ "grad_norm": 0.578125,
1393
+ "learning_rate": 7.594752186588922e-05,
1394
+ "loss": 3.335,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 0.7250865367097832,
1399
+ "grad_norm": 0.6484375,
1400
+ "learning_rate": 7.582604470359573e-05,
1401
+ "loss": 3.2617,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 0.7287301876480233,
1406
+ "grad_norm": 0.5234375,
1407
+ "learning_rate": 7.570456754130224e-05,
1408
+ "loss": 3.2335,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 0.7323738385862635,
1413
+ "grad_norm": 0.640625,
1414
+ "learning_rate": 7.558309037900875e-05,
1415
+ "loss": 3.2604,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 0.7360174895245035,
1420
+ "grad_norm": 0.57421875,
1421
+ "learning_rate": 7.546161321671527e-05,
1422
+ "loss": 3.2632,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 0.7396611404627437,
1427
+ "grad_norm": 0.61328125,
1428
+ "learning_rate": 7.534013605442178e-05,
1429
+ "loss": 3.2184,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 0.7433047914009838,
1434
+ "grad_norm": 0.6171875,
1435
+ "learning_rate": 7.521865889212827e-05,
1436
+ "loss": 3.2848,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 0.7469484423392239,
1441
+ "grad_norm": 0.6484375,
1442
+ "learning_rate": 7.50971817298348e-05,
1443
+ "loss": 3.2473,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 0.750592093277464,
1448
+ "grad_norm": 0.6953125,
1449
+ "learning_rate": 7.49757045675413e-05,
1450
+ "loss": 3.195,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 0.7542357442157042,
1455
+ "grad_norm": 0.73046875,
1456
+ "learning_rate": 7.485422740524782e-05,
1457
+ "loss": 3.2248,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 0.7578793951539442,
1462
+ "grad_norm": 0.5390625,
1463
+ "learning_rate": 7.473275024295433e-05,
1464
+ "loss": 3.1511,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 0.7615230460921844,
1469
+ "grad_norm": 0.66796875,
1470
+ "learning_rate": 7.461127308066083e-05,
1471
+ "loss": 3.2719,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 0.7651666970304245,
1476
+ "grad_norm": 0.57421875,
1477
+ "learning_rate": 7.448979591836736e-05,
1478
+ "loss": 3.2339,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 0.7688103479686647,
1483
+ "grad_norm": 0.61328125,
1484
+ "learning_rate": 7.436831875607387e-05,
1485
+ "loss": 3.2863,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 0.7724539989069047,
1490
+ "grad_norm": 0.55859375,
1491
+ "learning_rate": 7.424684159378036e-05,
1492
+ "loss": 3.2057,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 0.7760976498451448,
1497
+ "grad_norm": 0.73046875,
1498
+ "learning_rate": 7.412536443148689e-05,
1499
+ "loss": 3.2397,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 0.779741300783385,
1504
+ "grad_norm": 0.59375,
1505
+ "learning_rate": 7.40038872691934e-05,
1506
+ "loss": 3.2323,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 0.783384951721625,
1511
+ "grad_norm": 0.63671875,
1512
+ "learning_rate": 7.38824101068999e-05,
1513
+ "loss": 3.2764,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 0.7870286026598652,
1518
+ "grad_norm": 0.60546875,
1519
+ "learning_rate": 7.376093294460641e-05,
1520
+ "loss": 3.2668,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 0.7906722535981053,
1525
+ "grad_norm": 0.63671875,
1526
+ "learning_rate": 7.363945578231292e-05,
1527
+ "loss": 3.2953,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 0.7943159045363454,
1532
+ "grad_norm": 0.5625,
1533
+ "learning_rate": 7.351797862001945e-05,
1534
+ "loss": 3.1915,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 0.7979595554745855,
1539
+ "grad_norm": 0.66015625,
1540
+ "learning_rate": 7.339650145772596e-05,
1541
+ "loss": 3.2622,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 0.8016032064128257,
1546
+ "grad_norm": 0.6171875,
1547
+ "learning_rate": 7.327502429543247e-05,
1548
+ "loss": 3.2522,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 0.8052468573510657,
1553
+ "grad_norm": 0.64453125,
1554
+ "learning_rate": 7.315354713313898e-05,
1555
+ "loss": 3.1673,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 0.8088905082893059,
1560
+ "grad_norm": 0.625,
1561
+ "learning_rate": 7.303206997084548e-05,
1562
+ "loss": 3.2722,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 0.812534159227546,
1567
+ "grad_norm": 0.6640625,
1568
+ "learning_rate": 7.2910592808552e-05,
1569
+ "loss": 3.2377,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 0.8161778101657862,
1574
+ "grad_norm": 0.6171875,
1575
+ "learning_rate": 7.27891156462585e-05,
1576
+ "loss": 3.179,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 0.8198214611040262,
1581
+ "grad_norm": 0.57421875,
1582
+ "learning_rate": 7.266763848396501e-05,
1583
+ "loss": 3.2588,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 0.8234651120422664,
1588
+ "grad_norm": 0.578125,
1589
+ "learning_rate": 7.254616132167152e-05,
1590
+ "loss": 3.2664,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 0.8271087629805065,
1595
+ "grad_norm": 0.73046875,
1596
+ "learning_rate": 7.242468415937805e-05,
1597
+ "loss": 3.2515,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 0.8307524139187465,
1602
+ "grad_norm": 0.6328125,
1603
+ "learning_rate": 7.230320699708455e-05,
1604
+ "loss": 3.2102,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 0.8343960648569867,
1609
+ "grad_norm": 0.6484375,
1610
+ "learning_rate": 7.218172983479106e-05,
1611
+ "loss": 3.246,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 0.8380397157952268,
1616
+ "grad_norm": 0.58203125,
1617
+ "learning_rate": 7.206025267249757e-05,
1618
+ "loss": 3.3321,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 0.8416833667334669,
1623
+ "grad_norm": 0.59765625,
1624
+ "learning_rate": 7.193877551020408e-05,
1625
+ "loss": 3.0889,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 0.845327017671707,
1630
+ "grad_norm": 0.66015625,
1631
+ "learning_rate": 7.18172983479106e-05,
1632
+ "loss": 3.2811,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 0.8489706686099472,
1637
+ "grad_norm": 0.65234375,
1638
+ "learning_rate": 7.16958211856171e-05,
1639
+ "loss": 3.1688,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 0.8526143195481873,
1644
+ "grad_norm": 0.76171875,
1645
+ "learning_rate": 7.157434402332361e-05,
1646
+ "loss": 3.2495,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 0.8562579704864274,
1651
+ "grad_norm": 0.6484375,
1652
+ "learning_rate": 7.145286686103013e-05,
1653
+ "loss": 3.1742,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 0.8599016214246675,
1658
+ "grad_norm": 0.5859375,
1659
+ "learning_rate": 7.133138969873664e-05,
1660
+ "loss": 3.2293,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 0.8635452723629077,
1665
+ "grad_norm": 0.640625,
1666
+ "learning_rate": 7.120991253644315e-05,
1667
+ "loss": 3.2574,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 0.8671889233011477,
1672
+ "grad_norm": 0.55078125,
1673
+ "learning_rate": 7.108843537414966e-05,
1674
+ "loss": 3.2496,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 0.8708325742393879,
1679
+ "grad_norm": 0.7109375,
1680
+ "learning_rate": 7.096695821185617e-05,
1681
+ "loss": 3.2527,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 0.874476225177628,
1686
+ "grad_norm": 0.6640625,
1687
+ "learning_rate": 7.08454810495627e-05,
1688
+ "loss": 3.1984,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 0.8781198761158681,
1693
+ "grad_norm": 0.58984375,
1694
+ "learning_rate": 7.072400388726919e-05,
1695
+ "loss": 3.2517,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 0.8817635270541082,
1700
+ "grad_norm": 0.6171875,
1701
+ "learning_rate": 7.06025267249757e-05,
1702
+ "loss": 3.2105,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 0.8854071779923484,
1707
+ "grad_norm": 0.62890625,
1708
+ "learning_rate": 7.048104956268222e-05,
1709
+ "loss": 3.2125,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 0.8890508289305884,
1714
+ "grad_norm": 0.72265625,
1715
+ "learning_rate": 7.035957240038873e-05,
1716
+ "loss": 3.255,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 0.8926944798688285,
1721
+ "grad_norm": 0.671875,
1722
+ "learning_rate": 7.023809523809524e-05,
1723
+ "loss": 3.3331,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 0.8963381308070687,
1728
+ "grad_norm": 0.65234375,
1729
+ "learning_rate": 7.011661807580175e-05,
1730
+ "loss": 3.3545,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 0.8999817817453089,
1735
+ "grad_norm": 0.62890625,
1736
+ "learning_rate": 6.999514091350826e-05,
1737
+ "loss": 3.2776,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 0.9036254326835489,
1742
+ "grad_norm": 0.76953125,
1743
+ "learning_rate": 6.987366375121478e-05,
1744
+ "loss": 3.2331,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 0.907269083621789,
1749
+ "grad_norm": 0.78515625,
1750
+ "learning_rate": 6.975218658892128e-05,
1751
+ "loss": 3.2803,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 0.9109127345600292,
1756
+ "grad_norm": 0.671875,
1757
+ "learning_rate": 6.963070942662779e-05,
1758
+ "loss": 3.256,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 0.9145563854982692,
1763
+ "grad_norm": 0.59765625,
1764
+ "learning_rate": 6.950923226433431e-05,
1765
+ "loss": 3.2896,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 0.9182000364365094,
1770
+ "grad_norm": 0.62890625,
1771
+ "learning_rate": 6.938775510204082e-05,
1772
+ "loss": 3.2555,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 0.9218436873747495,
1777
+ "grad_norm": 0.7421875,
1778
+ "learning_rate": 6.926627793974733e-05,
1779
+ "loss": 3.2682,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 0.9254873383129896,
1784
+ "grad_norm": 0.671875,
1785
+ "learning_rate": 6.914480077745384e-05,
1786
+ "loss": 3.1564,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 0.9291309892512297,
1791
+ "grad_norm": 0.6484375,
1792
+ "learning_rate": 6.902332361516035e-05,
1793
+ "loss": 3.1445,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 0.9327746401894699,
1798
+ "grad_norm": 0.51953125,
1799
+ "learning_rate": 6.890184645286687e-05,
1800
+ "loss": 3.2515,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 0.9364182911277099,
1805
+ "grad_norm": 0.65625,
1806
+ "learning_rate": 6.878036929057337e-05,
1807
+ "loss": 3.1962,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 0.9400619420659501,
1812
+ "grad_norm": 0.59375,
1813
+ "learning_rate": 6.865889212827988e-05,
1814
+ "loss": 3.3199,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 0.9437055930041902,
1819
+ "grad_norm": 0.65234375,
1820
+ "learning_rate": 6.85374149659864e-05,
1821
+ "loss": 3.264,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 0.9473492439424304,
1826
+ "grad_norm": 0.63671875,
1827
+ "learning_rate": 6.841593780369291e-05,
1828
+ "loss": 3.1853,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 0.9509928948806704,
1833
+ "grad_norm": 0.72265625,
1834
+ "learning_rate": 6.829446064139942e-05,
1835
+ "loss": 3.3017,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 0.9546365458189106,
1840
+ "grad_norm": 0.6953125,
1841
+ "learning_rate": 6.817298347910593e-05,
1842
+ "loss": 3.2358,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 0.9582801967571507,
1847
+ "grad_norm": 0.6328125,
1848
+ "learning_rate": 6.805150631681244e-05,
1849
+ "loss": 3.2854,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 0.9619238476953907,
1854
+ "grad_norm": 0.5859375,
1855
+ "learning_rate": 6.793002915451895e-05,
1856
+ "loss": 3.1873,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 0.9655674986336309,
1861
+ "grad_norm": 0.59375,
1862
+ "learning_rate": 6.780855199222547e-05,
1863
+ "loss": 3.2274,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 0.969211149571871,
1868
+ "grad_norm": 0.63671875,
1869
+ "learning_rate": 6.768707482993197e-05,
1870
+ "loss": 3.2037,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 0.9728548005101111,
1875
+ "grad_norm": 0.5703125,
1876
+ "learning_rate": 6.756559766763849e-05,
1877
+ "loss": 3.3132,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 0.9764984514483512,
1882
+ "grad_norm": 0.72265625,
1883
+ "learning_rate": 6.7444120505345e-05,
1884
+ "loss": 3.2734,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 0.9801421023865914,
1889
+ "grad_norm": 0.70703125,
1890
+ "learning_rate": 6.732264334305151e-05,
1891
+ "loss": 3.1784,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 0.9837857533248315,
1896
+ "grad_norm": 0.57421875,
1897
+ "learning_rate": 6.720116618075802e-05,
1898
+ "loss": 3.2181,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 0.9874294042630716,
1903
+ "grad_norm": 0.6953125,
1904
+ "learning_rate": 6.707968901846453e-05,
1905
+ "loss": 3.2676,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 0.9910730552013117,
1910
+ "grad_norm": 0.6875,
1911
+ "learning_rate": 6.695821185617104e-05,
1912
+ "loss": 3.1952,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 0.9947167061395519,
1917
+ "grad_norm": 0.609375,
1918
+ "learning_rate": 6.683673469387756e-05,
1919
+ "loss": 3.3135,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 0.9983603570777919,
1924
+ "grad_norm": 0.6484375,
1925
+ "learning_rate": 6.671525753158406e-05,
1926
+ "loss": 3.2643,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 1.002004008016032,
1931
+ "grad_norm": 0.6015625,
1932
+ "learning_rate": 6.659378036929058e-05,
1933
+ "loss": 3.1996,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 1.0056476589542722,
1938
+ "grad_norm": 0.75,
1939
+ "learning_rate": 6.647230320699709e-05,
1940
+ "loss": 3.0862,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 1.0092913098925123,
1945
+ "grad_norm": 0.671875,
1946
+ "learning_rate": 6.63508260447036e-05,
1947
+ "loss": 3.1886,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 1.0129349608307525,
1952
+ "grad_norm": 0.65625,
1953
+ "learning_rate": 6.622934888241011e-05,
1954
+ "loss": 3.1478,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 1.0165786117689926,
1959
+ "grad_norm": 0.69921875,
1960
+ "learning_rate": 6.610787172011662e-05,
1961
+ "loss": 3.1577,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 1.0202222627072326,
1966
+ "grad_norm": 0.77734375,
1967
+ "learning_rate": 6.598639455782313e-05,
1968
+ "loss": 3.148,
1969
+ "step": 2800
1970
+ },
1971
+ {
1972
+ "epoch": 1.0238659136454729,
1973
+ "grad_norm": 0.640625,
1974
+ "learning_rate": 6.586491739552965e-05,
1975
+ "loss": 3.1971,
1976
+ "step": 2810
1977
+ },
1978
+ {
1979
+ "epoch": 1.027509564583713,
1980
+ "grad_norm": 0.58984375,
1981
+ "learning_rate": 6.574344023323615e-05,
1982
+ "loss": 3.1351,
1983
+ "step": 2820
1984
+ },
1985
+ {
1986
+ "epoch": 1.031153215521953,
1987
+ "grad_norm": 0.734375,
1988
+ "learning_rate": 6.562196307094267e-05,
1989
+ "loss": 3.2304,
1990
+ "step": 2830
1991
+ },
1992
+ {
1993
+ "epoch": 1.0347968664601932,
1994
+ "grad_norm": 0.71484375,
1995
+ "learning_rate": 6.550048590864918e-05,
1996
+ "loss": 3.1582,
1997
+ "step": 2840
1998
+ },
1999
+ {
2000
+ "epoch": 1.0384405173984332,
2001
+ "grad_norm": 0.71875,
2002
+ "learning_rate": 6.537900874635569e-05,
2003
+ "loss": 3.1183,
2004
+ "step": 2850
2005
+ },
2006
+ {
2007
+ "epoch": 1.0420841683366733,
2008
+ "grad_norm": 0.8046875,
2009
+ "learning_rate": 6.52575315840622e-05,
2010
+ "loss": 3.2056,
2011
+ "step": 2860
2012
+ },
2013
+ {
2014
+ "epoch": 1.0457278192749135,
2015
+ "grad_norm": 0.765625,
2016
+ "learning_rate": 6.513605442176871e-05,
2017
+ "loss": 3.1694,
2018
+ "step": 2870
2019
+ },
2020
+ {
2021
+ "epoch": 1.0493714702131536,
2022
+ "grad_norm": 0.890625,
2023
+ "learning_rate": 6.501457725947522e-05,
2024
+ "loss": 3.1428,
2025
+ "step": 2880
2026
+ },
2027
+ {
2028
+ "epoch": 1.0530151211513936,
2029
+ "grad_norm": 0.65625,
2030
+ "learning_rate": 6.489310009718174e-05,
2031
+ "loss": 3.1052,
2032
+ "step": 2890
2033
+ },
2034
+ {
2035
+ "epoch": 1.0566587720896339,
2036
+ "grad_norm": 0.83203125,
2037
+ "learning_rate": 6.477162293488824e-05,
2038
+ "loss": 3.1195,
2039
+ "step": 2900
2040
+ },
2041
+ {
2042
+ "epoch": 1.060302423027874,
2043
+ "grad_norm": 0.7421875,
2044
+ "learning_rate": 6.465014577259475e-05,
2045
+ "loss": 3.2278,
2046
+ "step": 2910
2047
+ },
2048
+ {
2049
+ "epoch": 1.063946073966114,
2050
+ "grad_norm": 0.71875,
2051
+ "learning_rate": 6.452866861030127e-05,
2052
+ "loss": 3.1563,
2053
+ "step": 2920
2054
+ },
2055
+ {
2056
+ "epoch": 1.0675897249043542,
2057
+ "grad_norm": 0.69140625,
2058
+ "learning_rate": 6.440719144800778e-05,
2059
+ "loss": 3.1505,
2060
+ "step": 2930
2061
+ },
2062
+ {
2063
+ "epoch": 1.0712333758425943,
2064
+ "grad_norm": 0.8515625,
2065
+ "learning_rate": 6.428571428571429e-05,
2066
+ "loss": 3.1681,
2067
+ "step": 2940
2068
+ },
2069
+ {
2070
+ "epoch": 1.0748770267808343,
2071
+ "grad_norm": 0.71484375,
2072
+ "learning_rate": 6.41642371234208e-05,
2073
+ "loss": 3.17,
2074
+ "step": 2950
2075
+ },
2076
+ {
2077
+ "epoch": 1.0785206777190746,
2078
+ "grad_norm": 0.90625,
2079
+ "learning_rate": 6.40427599611273e-05,
2080
+ "loss": 3.1775,
2081
+ "step": 2960
2082
+ },
2083
+ {
2084
+ "epoch": 1.0821643286573146,
2085
+ "grad_norm": 0.73828125,
2086
+ "learning_rate": 6.392128279883383e-05,
2087
+ "loss": 3.0921,
2088
+ "step": 2970
2089
+ },
2090
+ {
2091
+ "epoch": 1.0858079795955549,
2092
+ "grad_norm": 0.75390625,
2093
+ "learning_rate": 6.379980563654034e-05,
2094
+ "loss": 3.1666,
2095
+ "step": 2980
2096
+ },
2097
+ {
2098
+ "epoch": 1.089451630533795,
2099
+ "grad_norm": 0.80859375,
2100
+ "learning_rate": 6.367832847424684e-05,
2101
+ "loss": 3.1935,
2102
+ "step": 2990
2103
+ },
2104
+ {
2105
+ "epoch": 1.093095281472035,
2106
+ "grad_norm": 0.67578125,
2107
+ "learning_rate": 6.355685131195336e-05,
2108
+ "loss": 3.0588,
2109
+ "step": 3000
2110
+ }
2111
+ ],
2112
+ "logging_steps": 10,
2113
+ "max_steps": 8232,
2114
+ "num_input_tokens_seen": 0,
2115
+ "num_train_epochs": 3,
2116
+ "save_steps": 500,
2117
+ "stateful_callbacks": {
2118
+ "TrainerControl": {
2119
+ "args": {
2120
+ "should_epoch_stop": false,
2121
+ "should_evaluate": false,
2122
+ "should_log": false,
2123
+ "should_save": true,
2124
+ "should_training_stop": false
2125
+ },
2126
+ "attributes": {}
2127
+ }
2128
+ },
2129
+ "total_flos": 6.570661967366676e+17,
2130
+ "train_batch_size": 4,
2131
+ "trial_name": null,
2132
+ "trial_params": null
2133
+ }
output/checkpoint-1/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33a47aea173545de6282df593b843ae6550627d1751fcad16521a60227b61fa5
3
+ size 5176
output/checkpoint-2/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /root/autodl-tmp/qwen/Qwen2-7B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
output/checkpoint-2/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/root/autodl-tmp/qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "q_proj",
28
+ "down_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
output/checkpoint-2/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:415c4a2a42a3c7901c4fd72fc7847dd9b79abf6e47bebb3e79b38a23ec45be96
3
+ size 40422208
output/checkpoint-2/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ac69df627c470982c47f00e4fb4fc406f0f2b43d509414070a514263e039dc0
3
+ size 81069930
output/checkpoint-2/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87d41c1f4c9a4bedf4025aa8ab1c143358b92dd14a199313ce0a6a1a1145fa7d
3
+ size 14244
output/checkpoint-2/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:587c0374c00fdf3227760ebf815438cade77adcc433f8068d41e66c77f67b691
3
+ size 1064
output/checkpoint-2/trainer_state.json ADDED
@@ -0,0 +1,2483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.275277828384041,
5
+ "eval_steps": 500,
6
+ "global_step": 3500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0036436509382401167,
13
+ "grad_norm": 0.6875,
14
+ "learning_rate": 9.987852283770651e-05,
15
+ "loss": 3.4902,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.007287301876480233,
20
+ "grad_norm": 0.66796875,
21
+ "learning_rate": 9.975704567541302e-05,
22
+ "loss": 3.3432,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.01093095281472035,
27
+ "grad_norm": 0.5546875,
28
+ "learning_rate": 9.963556851311953e-05,
29
+ "loss": 3.2381,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.014574603752960467,
34
+ "grad_norm": 0.65234375,
35
+ "learning_rate": 9.951409135082604e-05,
36
+ "loss": 3.2931,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.018218254691200583,
41
+ "grad_norm": 0.6328125,
42
+ "learning_rate": 9.939261418853257e-05,
43
+ "loss": 3.3235,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.0218619056294407,
48
+ "grad_norm": 0.64453125,
49
+ "learning_rate": 9.927113702623908e-05,
50
+ "loss": 3.2988,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.025505556567680818,
55
+ "grad_norm": 0.59765625,
56
+ "learning_rate": 9.914965986394558e-05,
57
+ "loss": 3.2927,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.029149207505920934,
62
+ "grad_norm": 0.57421875,
63
+ "learning_rate": 9.90281827016521e-05,
64
+ "loss": 3.275,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.03279285844416105,
69
+ "grad_norm": 0.640625,
70
+ "learning_rate": 9.89067055393586e-05,
71
+ "loss": 3.316,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.036436509382401165,
76
+ "grad_norm": 0.57421875,
77
+ "learning_rate": 9.878522837706513e-05,
78
+ "loss": 3.2611,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.04008016032064128,
83
+ "grad_norm": 0.51171875,
84
+ "learning_rate": 9.866375121477162e-05,
85
+ "loss": 3.268,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.0437238112588814,
90
+ "grad_norm": 0.703125,
91
+ "learning_rate": 9.854227405247813e-05,
92
+ "loss": 3.3032,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.04736746219712151,
97
+ "grad_norm": 0.5546875,
98
+ "learning_rate": 9.842079689018465e-05,
99
+ "loss": 3.3334,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.051011113135361635,
104
+ "grad_norm": 0.671875,
105
+ "learning_rate": 9.829931972789116e-05,
106
+ "loss": 3.1943,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.05465476407360175,
111
+ "grad_norm": 0.6171875,
112
+ "learning_rate": 9.817784256559767e-05,
113
+ "loss": 3.2574,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.05829841501184187,
118
+ "grad_norm": 0.66015625,
119
+ "learning_rate": 9.805636540330418e-05,
120
+ "loss": 3.3747,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.06194206595008198,
125
+ "grad_norm": 0.52734375,
126
+ "learning_rate": 9.793488824101069e-05,
127
+ "loss": 3.2992,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.0655857168883221,
132
+ "grad_norm": 0.50390625,
133
+ "learning_rate": 9.781341107871722e-05,
134
+ "loss": 3.2342,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.06922936782656222,
139
+ "grad_norm": 0.65234375,
140
+ "learning_rate": 9.769193391642371e-05,
141
+ "loss": 3.356,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.07287301876480233,
146
+ "grad_norm": 0.57421875,
147
+ "learning_rate": 9.757045675413022e-05,
148
+ "loss": 3.3618,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.07651666970304245,
153
+ "grad_norm": 0.58984375,
154
+ "learning_rate": 9.744897959183674e-05,
155
+ "loss": 3.2931,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.08016032064128256,
160
+ "grad_norm": 0.77734375,
161
+ "learning_rate": 9.732750242954325e-05,
162
+ "loss": 3.3246,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.08380397157952268,
167
+ "grad_norm": 0.5859375,
168
+ "learning_rate": 9.720602526724975e-05,
169
+ "loss": 3.3181,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.0874476225177628,
174
+ "grad_norm": 0.640625,
175
+ "learning_rate": 9.708454810495627e-05,
176
+ "loss": 3.2757,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.09109127345600292,
181
+ "grad_norm": 0.55859375,
182
+ "learning_rate": 9.696307094266278e-05,
183
+ "loss": 3.2753,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.09473492439424303,
188
+ "grad_norm": 0.58203125,
189
+ "learning_rate": 9.68415937803693e-05,
190
+ "loss": 3.3207,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.09837857533248315,
195
+ "grad_norm": 0.63671875,
196
+ "learning_rate": 9.67201166180758e-05,
197
+ "loss": 3.3035,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.10202222627072327,
202
+ "grad_norm": 0.578125,
203
+ "learning_rate": 9.659863945578231e-05,
204
+ "loss": 3.3025,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.10566587720896338,
209
+ "grad_norm": 0.5859375,
210
+ "learning_rate": 9.647716229348883e-05,
211
+ "loss": 3.2066,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.1093095281472035,
216
+ "grad_norm": 0.7109375,
217
+ "learning_rate": 9.635568513119534e-05,
218
+ "loss": 3.2757,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.11295317908544361,
223
+ "grad_norm": 0.609375,
224
+ "learning_rate": 9.623420796890185e-05,
225
+ "loss": 3.1904,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.11659683002368373,
230
+ "grad_norm": 0.60546875,
231
+ "learning_rate": 9.611273080660836e-05,
232
+ "loss": 3.1947,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.12024048096192384,
237
+ "grad_norm": 0.6171875,
238
+ "learning_rate": 9.599125364431487e-05,
239
+ "loss": 3.2016,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.12388413190016397,
244
+ "grad_norm": 0.640625,
245
+ "learning_rate": 9.58697764820214e-05,
246
+ "loss": 3.329,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.12752778283840407,
251
+ "grad_norm": 0.66796875,
252
+ "learning_rate": 9.574829931972789e-05,
253
+ "loss": 3.2483,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.1311714337766442,
258
+ "grad_norm": 0.57421875,
259
+ "learning_rate": 9.56268221574344e-05,
260
+ "loss": 3.2388,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.13481508471488432,
265
+ "grad_norm": 0.58984375,
266
+ "learning_rate": 9.550534499514092e-05,
267
+ "loss": 3.2722,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.13845873565312444,
272
+ "grad_norm": 0.58203125,
273
+ "learning_rate": 9.538386783284743e-05,
274
+ "loss": 3.2672,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.14210238659136454,
279
+ "grad_norm": 0.5234375,
280
+ "learning_rate": 9.526239067055394e-05,
281
+ "loss": 3.3378,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.14574603752960466,
286
+ "grad_norm": 0.55859375,
287
+ "learning_rate": 9.514091350826045e-05,
288
+ "loss": 3.2637,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.14938968846784478,
293
+ "grad_norm": 0.70703125,
294
+ "learning_rate": 9.501943634596696e-05,
295
+ "loss": 3.2879,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.1530333394060849,
300
+ "grad_norm": 0.6640625,
301
+ "learning_rate": 9.489795918367348e-05,
302
+ "loss": 3.2614,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.156676990344325,
307
+ "grad_norm": 0.625,
308
+ "learning_rate": 9.477648202137999e-05,
309
+ "loss": 3.2469,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.16032064128256512,
314
+ "grad_norm": 0.5703125,
315
+ "learning_rate": 9.465500485908649e-05,
316
+ "loss": 3.1614,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.16396429222080525,
321
+ "grad_norm": 0.59765625,
322
+ "learning_rate": 9.453352769679301e-05,
323
+ "loss": 3.2658,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.16760794315904537,
328
+ "grad_norm": 0.6953125,
329
+ "learning_rate": 9.441205053449952e-05,
330
+ "loss": 3.3253,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.1712515940972855,
335
+ "grad_norm": 0.67578125,
336
+ "learning_rate": 9.429057337220603e-05,
337
+ "loss": 3.2311,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.1748952450355256,
342
+ "grad_norm": 0.625,
343
+ "learning_rate": 9.416909620991254e-05,
344
+ "loss": 3.3117,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.1785388959737657,
349
+ "grad_norm": 0.6640625,
350
+ "learning_rate": 9.404761904761905e-05,
351
+ "loss": 3.3513,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.18218254691200583,
356
+ "grad_norm": 0.5703125,
357
+ "learning_rate": 9.392614188532556e-05,
358
+ "loss": 3.3071,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.18582619785024596,
363
+ "grad_norm": 0.5703125,
364
+ "learning_rate": 9.380466472303208e-05,
365
+ "loss": 3.3047,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.18946984878848605,
370
+ "grad_norm": 0.58984375,
371
+ "learning_rate": 9.368318756073858e-05,
372
+ "loss": 3.1964,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.19311349972672617,
377
+ "grad_norm": 0.57421875,
378
+ "learning_rate": 9.35617103984451e-05,
379
+ "loss": 3.2459,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.1967571506649663,
384
+ "grad_norm": 0.62109375,
385
+ "learning_rate": 9.344023323615161e-05,
386
+ "loss": 3.205,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.20040080160320642,
391
+ "grad_norm": 0.66015625,
392
+ "learning_rate": 9.331875607385812e-05,
393
+ "loss": 3.2856,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.20404445254144654,
398
+ "grad_norm": 0.52734375,
399
+ "learning_rate": 9.319727891156463e-05,
400
+ "loss": 3.185,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.20768810347968664,
405
+ "grad_norm": 0.5546875,
406
+ "learning_rate": 9.307580174927114e-05,
407
+ "loss": 3.3071,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.21133175441792676,
412
+ "grad_norm": 0.63671875,
413
+ "learning_rate": 9.295432458697765e-05,
414
+ "loss": 3.2363,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.21497540535616688,
419
+ "grad_norm": 0.5625,
420
+ "learning_rate": 9.283284742468417e-05,
421
+ "loss": 3.2697,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.218619056294407,
426
+ "grad_norm": 0.56640625,
427
+ "learning_rate": 9.271137026239067e-05,
428
+ "loss": 3.3037,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.2222627072326471,
433
+ "grad_norm": 0.53125,
434
+ "learning_rate": 9.258989310009719e-05,
435
+ "loss": 3.2371,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.22590635817088722,
440
+ "grad_norm": 0.61328125,
441
+ "learning_rate": 9.24684159378037e-05,
442
+ "loss": 3.3367,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.22955000910912735,
447
+ "grad_norm": 0.5703125,
448
+ "learning_rate": 9.234693877551021e-05,
449
+ "loss": 3.2109,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.23319366004736747,
454
+ "grad_norm": 0.59375,
455
+ "learning_rate": 9.222546161321672e-05,
456
+ "loss": 3.2374,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.2368373109856076,
461
+ "grad_norm": 0.6875,
462
+ "learning_rate": 9.210398445092323e-05,
463
+ "loss": 3.3066,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.24048096192384769,
468
+ "grad_norm": 0.6484375,
469
+ "learning_rate": 9.198250728862974e-05,
470
+ "loss": 3.2635,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.2441246128620878,
475
+ "grad_norm": 0.60546875,
476
+ "learning_rate": 9.186103012633626e-05,
477
+ "loss": 3.26,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.24776826380032793,
482
+ "grad_norm": 0.65234375,
483
+ "learning_rate": 9.173955296404276e-05,
484
+ "loss": 3.2641,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.25141191473856805,
489
+ "grad_norm": 0.6015625,
490
+ "learning_rate": 9.161807580174927e-05,
491
+ "loss": 3.2907,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.25505556567680815,
496
+ "grad_norm": 0.54296875,
497
+ "learning_rate": 9.149659863945579e-05,
498
+ "loss": 3.2567,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.2586992166150483,
503
+ "grad_norm": 0.62890625,
504
+ "learning_rate": 9.13751214771623e-05,
505
+ "loss": 3.2838,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.2623428675532884,
510
+ "grad_norm": 0.546875,
511
+ "learning_rate": 9.125364431486881e-05,
512
+ "loss": 3.2969,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.2659865184915285,
517
+ "grad_norm": 0.6328125,
518
+ "learning_rate": 9.113216715257532e-05,
519
+ "loss": 3.2212,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.26963016942976864,
524
+ "grad_norm": 0.6328125,
525
+ "learning_rate": 9.101068999028183e-05,
526
+ "loss": 3.212,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.27327382036800874,
531
+ "grad_norm": 0.5859375,
532
+ "learning_rate": 9.088921282798835e-05,
533
+ "loss": 3.3488,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.2769174713062489,
538
+ "grad_norm": 0.546875,
539
+ "learning_rate": 9.076773566569486e-05,
540
+ "loss": 3.2143,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.280561122244489,
545
+ "grad_norm": 0.56640625,
546
+ "learning_rate": 9.064625850340136e-05,
547
+ "loss": 3.2518,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.2842047731827291,
552
+ "grad_norm": 0.578125,
553
+ "learning_rate": 9.052478134110788e-05,
554
+ "loss": 3.2638,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.2878484241209692,
559
+ "grad_norm": 0.58203125,
560
+ "learning_rate": 9.040330417881439e-05,
561
+ "loss": 3.2584,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.2914920750592093,
566
+ "grad_norm": 0.62890625,
567
+ "learning_rate": 9.02818270165209e-05,
568
+ "loss": 3.2841,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.29513572599744947,
573
+ "grad_norm": 0.55078125,
574
+ "learning_rate": 9.01603498542274e-05,
575
+ "loss": 3.261,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.29877937693568957,
580
+ "grad_norm": 0.6171875,
581
+ "learning_rate": 9.003887269193392e-05,
582
+ "loss": 3.2954,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.30242302787392966,
587
+ "grad_norm": 0.54296875,
588
+ "learning_rate": 8.991739552964044e-05,
589
+ "loss": 3.2337,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.3060666788121698,
594
+ "grad_norm": 0.6171875,
595
+ "learning_rate": 8.979591836734695e-05,
596
+ "loss": 3.2881,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.3097103297504099,
601
+ "grad_norm": 0.5546875,
602
+ "learning_rate": 8.967444120505344e-05,
603
+ "loss": 3.3519,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.31335398068865,
608
+ "grad_norm": 0.5859375,
609
+ "learning_rate": 8.955296404275997e-05,
610
+ "loss": 3.3147,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.31699763162689015,
615
+ "grad_norm": 0.62890625,
616
+ "learning_rate": 8.943148688046648e-05,
617
+ "loss": 3.2304,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.32064128256513025,
622
+ "grad_norm": 0.60546875,
623
+ "learning_rate": 8.931000971817299e-05,
624
+ "loss": 3.2526,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.3242849335033704,
629
+ "grad_norm": 0.6640625,
630
+ "learning_rate": 8.91885325558795e-05,
631
+ "loss": 3.309,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.3279285844416105,
636
+ "grad_norm": 0.6484375,
637
+ "learning_rate": 8.9067055393586e-05,
638
+ "loss": 3.2513,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.3315722353798506,
643
+ "grad_norm": 0.5703125,
644
+ "learning_rate": 8.894557823129253e-05,
645
+ "loss": 3.2135,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.33521588631809074,
650
+ "grad_norm": 0.64453125,
651
+ "learning_rate": 8.882410106899904e-05,
652
+ "loss": 3.3048,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.33885953725633083,
657
+ "grad_norm": 0.6015625,
658
+ "learning_rate": 8.870262390670553e-05,
659
+ "loss": 3.3047,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.342503188194571,
664
+ "grad_norm": 0.6015625,
665
+ "learning_rate": 8.858114674441206e-05,
666
+ "loss": 3.2616,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.3461468391328111,
671
+ "grad_norm": 0.5859375,
672
+ "learning_rate": 8.845966958211857e-05,
673
+ "loss": 3.2697,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.3497904900710512,
678
+ "grad_norm": 0.72265625,
679
+ "learning_rate": 8.833819241982508e-05,
680
+ "loss": 3.2395,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.3534341410092913,
685
+ "grad_norm": 0.61328125,
686
+ "learning_rate": 8.821671525753159e-05,
687
+ "loss": 3.2137,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.3570777919475314,
692
+ "grad_norm": 0.625,
693
+ "learning_rate": 8.80952380952381e-05,
694
+ "loss": 3.2872,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.36072144288577157,
699
+ "grad_norm": 0.5859375,
700
+ "learning_rate": 8.797376093294462e-05,
701
+ "loss": 3.2682,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.36436509382401167,
706
+ "grad_norm": 0.5390625,
707
+ "learning_rate": 8.785228377065113e-05,
708
+ "loss": 3.204,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.36800874476225176,
713
+ "grad_norm": 0.71875,
714
+ "learning_rate": 8.773080660835762e-05,
715
+ "loss": 3.2472,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.3716523957004919,
720
+ "grad_norm": 0.609375,
721
+ "learning_rate": 8.760932944606415e-05,
722
+ "loss": 3.2638,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.375296046638732,
727
+ "grad_norm": 0.60546875,
728
+ "learning_rate": 8.748785228377066e-05,
729
+ "loss": 3.2803,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.3789396975769721,
734
+ "grad_norm": 0.66796875,
735
+ "learning_rate": 8.736637512147716e-05,
736
+ "loss": 3.273,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.38258334851521225,
741
+ "grad_norm": 0.65625,
742
+ "learning_rate": 8.724489795918367e-05,
743
+ "loss": 3.2854,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.38622699945345235,
748
+ "grad_norm": 0.640625,
749
+ "learning_rate": 8.712342079689018e-05,
750
+ "loss": 3.2373,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.3898706503916925,
755
+ "grad_norm": 0.55859375,
756
+ "learning_rate": 8.700194363459671e-05,
757
+ "loss": 3.2259,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.3935143013299326,
762
+ "grad_norm": 0.5078125,
763
+ "learning_rate": 8.688046647230322e-05,
764
+ "loss": 3.2402,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.3971579522681727,
769
+ "grad_norm": 0.61328125,
770
+ "learning_rate": 8.675898931000973e-05,
771
+ "loss": 3.2379,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.40080160320641284,
776
+ "grad_norm": 0.59375,
777
+ "learning_rate": 8.663751214771624e-05,
778
+ "loss": 3.2564,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.40444525414465293,
783
+ "grad_norm": 0.69921875,
784
+ "learning_rate": 8.651603498542274e-05,
785
+ "loss": 3.2342,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.4080889050828931,
790
+ "grad_norm": 0.53125,
791
+ "learning_rate": 8.639455782312925e-05,
792
+ "loss": 3.3336,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.4117325560211332,
797
+ "grad_norm": 0.63671875,
798
+ "learning_rate": 8.627308066083576e-05,
799
+ "loss": 3.2684,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.4153762069593733,
804
+ "grad_norm": 0.61328125,
805
+ "learning_rate": 8.615160349854227e-05,
806
+ "loss": 3.2581,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.4190198578976134,
811
+ "grad_norm": 0.50390625,
812
+ "learning_rate": 8.603012633624878e-05,
813
+ "loss": 3.3428,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.4226635088358535,
818
+ "grad_norm": 0.58203125,
819
+ "learning_rate": 8.59086491739553e-05,
820
+ "loss": 3.2331,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.42630715977409367,
825
+ "grad_norm": 0.63671875,
826
+ "learning_rate": 8.578717201166182e-05,
827
+ "loss": 3.2203,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.42995081071233376,
832
+ "grad_norm": 0.57421875,
833
+ "learning_rate": 8.566569484936832e-05,
834
+ "loss": 3.248,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.43359446165057386,
839
+ "grad_norm": 0.6015625,
840
+ "learning_rate": 8.554421768707483e-05,
841
+ "loss": 3.3052,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.437238112588814,
846
+ "grad_norm": 0.5546875,
847
+ "learning_rate": 8.542274052478134e-05,
848
+ "loss": 3.2036,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.4408817635270541,
853
+ "grad_norm": 0.64453125,
854
+ "learning_rate": 8.530126336248787e-05,
855
+ "loss": 3.2199,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.4445254144652942,
860
+ "grad_norm": 0.68359375,
861
+ "learning_rate": 8.517978620019436e-05,
862
+ "loss": 3.2594,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.44816906540353435,
867
+ "grad_norm": 0.6953125,
868
+ "learning_rate": 8.505830903790087e-05,
869
+ "loss": 3.26,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.45181271634177445,
874
+ "grad_norm": 0.66015625,
875
+ "learning_rate": 8.49368318756074e-05,
876
+ "loss": 3.3623,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.4554563672800146,
881
+ "grad_norm": 0.7421875,
882
+ "learning_rate": 8.48153547133139e-05,
883
+ "loss": 3.2625,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.4591000182182547,
888
+ "grad_norm": 0.6875,
889
+ "learning_rate": 8.469387755102041e-05,
890
+ "loss": 3.2738,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.4627436691564948,
895
+ "grad_norm": 0.61328125,
896
+ "learning_rate": 8.457240038872692e-05,
897
+ "loss": 3.2688,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.46638732009473494,
902
+ "grad_norm": 0.609375,
903
+ "learning_rate": 8.445092322643343e-05,
904
+ "loss": 3.2392,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.47003097103297503,
909
+ "grad_norm": 0.56640625,
910
+ "learning_rate": 8.432944606413996e-05,
911
+ "loss": 3.2414,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.4736746219712152,
916
+ "grad_norm": 0.640625,
917
+ "learning_rate": 8.420796890184645e-05,
918
+ "loss": 3.2461,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.4773182729094553,
923
+ "grad_norm": 0.578125,
924
+ "learning_rate": 8.408649173955296e-05,
925
+ "loss": 3.3459,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.48096192384769537,
930
+ "grad_norm": 0.6953125,
931
+ "learning_rate": 8.396501457725948e-05,
932
+ "loss": 3.2631,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.4846055747859355,
937
+ "grad_norm": 0.59765625,
938
+ "learning_rate": 8.3843537414966e-05,
939
+ "loss": 3.2883,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.4882492257241756,
944
+ "grad_norm": 0.625,
945
+ "learning_rate": 8.372206025267249e-05,
946
+ "loss": 3.2085,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.49189287666241577,
951
+ "grad_norm": 0.6640625,
952
+ "learning_rate": 8.360058309037901e-05,
953
+ "loss": 3.3132,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.49553652760065586,
958
+ "grad_norm": 0.61328125,
959
+ "learning_rate": 8.347910592808552e-05,
960
+ "loss": 3.3076,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.49918017853889596,
965
+ "grad_norm": 0.7265625,
966
+ "learning_rate": 8.335762876579204e-05,
967
+ "loss": 3.3183,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.5028238294771361,
972
+ "grad_norm": 0.55859375,
973
+ "learning_rate": 8.323615160349854e-05,
974
+ "loss": 3.1761,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.5064674804153763,
979
+ "grad_norm": 0.60546875,
980
+ "learning_rate": 8.311467444120505e-05,
981
+ "loss": 3.2079,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 0.5101111313536163,
986
+ "grad_norm": 0.703125,
987
+ "learning_rate": 8.299319727891157e-05,
988
+ "loss": 3.2844,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 0.5137547822918564,
993
+ "grad_norm": 0.578125,
994
+ "learning_rate": 8.287172011661808e-05,
995
+ "loss": 3.2492,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 0.5173984332300966,
1000
+ "grad_norm": 0.6328125,
1001
+ "learning_rate": 8.275024295432459e-05,
1002
+ "loss": 3.2525,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 0.5210420841683366,
1007
+ "grad_norm": 0.5703125,
1008
+ "learning_rate": 8.26287657920311e-05,
1009
+ "loss": 3.2449,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 0.5246857351065768,
1014
+ "grad_norm": 0.54296875,
1015
+ "learning_rate": 8.250728862973761e-05,
1016
+ "loss": 3.2279,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 0.5283293860448169,
1021
+ "grad_norm": 0.5859375,
1022
+ "learning_rate": 8.238581146744413e-05,
1023
+ "loss": 3.2751,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 0.531973036983057,
1028
+ "grad_norm": 0.57421875,
1029
+ "learning_rate": 8.226433430515063e-05,
1030
+ "loss": 3.2404,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 0.5356166879212971,
1035
+ "grad_norm": 0.67578125,
1036
+ "learning_rate": 8.214285714285714e-05,
1037
+ "loss": 3.2911,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 0.5392603388595373,
1042
+ "grad_norm": 0.6796875,
1043
+ "learning_rate": 8.202137998056366e-05,
1044
+ "loss": 3.2637,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 0.5429039897977773,
1049
+ "grad_norm": 0.61328125,
1050
+ "learning_rate": 8.189990281827017e-05,
1051
+ "loss": 3.2004,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 0.5465476407360175,
1056
+ "grad_norm": 0.6875,
1057
+ "learning_rate": 8.177842565597668e-05,
1058
+ "loss": 3.2958,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 0.5501912916742576,
1063
+ "grad_norm": 0.609375,
1064
+ "learning_rate": 8.165694849368319e-05,
1065
+ "loss": 3.2371,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 0.5538349426124978,
1070
+ "grad_norm": 0.6171875,
1071
+ "learning_rate": 8.15354713313897e-05,
1072
+ "loss": 3.2798,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 0.5574785935507378,
1077
+ "grad_norm": 0.6953125,
1078
+ "learning_rate": 8.141399416909622e-05,
1079
+ "loss": 3.2608,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 0.561122244488978,
1084
+ "grad_norm": 0.62109375,
1085
+ "learning_rate": 8.129251700680273e-05,
1086
+ "loss": 3.2374,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 0.5647658954272181,
1091
+ "grad_norm": 0.625,
1092
+ "learning_rate": 8.117103984450923e-05,
1093
+ "loss": 3.189,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 0.5684095463654582,
1098
+ "grad_norm": 0.57421875,
1099
+ "learning_rate": 8.104956268221575e-05,
1100
+ "loss": 3.2008,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 0.5720531973036983,
1105
+ "grad_norm": 0.58984375,
1106
+ "learning_rate": 8.092808551992226e-05,
1107
+ "loss": 3.219,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 0.5756968482419385,
1112
+ "grad_norm": 0.58203125,
1113
+ "learning_rate": 8.080660835762877e-05,
1114
+ "loss": 3.2417,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 0.5793404991801785,
1119
+ "grad_norm": 0.63671875,
1120
+ "learning_rate": 8.068513119533528e-05,
1121
+ "loss": 3.236,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 0.5829841501184186,
1126
+ "grad_norm": 0.703125,
1127
+ "learning_rate": 8.056365403304179e-05,
1128
+ "loss": 3.3037,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 0.5866278010566588,
1133
+ "grad_norm": 0.703125,
1134
+ "learning_rate": 8.04421768707483e-05,
1135
+ "loss": 3.2412,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 0.5902714519948989,
1140
+ "grad_norm": 0.66796875,
1141
+ "learning_rate": 8.032069970845482e-05,
1142
+ "loss": 3.2293,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 0.593915102933139,
1147
+ "grad_norm": 0.6640625,
1148
+ "learning_rate": 8.019922254616132e-05,
1149
+ "loss": 3.2208,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 0.5975587538713791,
1154
+ "grad_norm": 0.671875,
1155
+ "learning_rate": 8.007774538386784e-05,
1156
+ "loss": 3.2251,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 0.6012024048096193,
1161
+ "grad_norm": 0.63671875,
1162
+ "learning_rate": 7.995626822157435e-05,
1163
+ "loss": 3.284,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 0.6048460557478593,
1168
+ "grad_norm": 0.6484375,
1169
+ "learning_rate": 7.983479105928086e-05,
1170
+ "loss": 3.2404,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 0.6084897066860995,
1175
+ "grad_norm": 0.69140625,
1176
+ "learning_rate": 7.971331389698737e-05,
1177
+ "loss": 3.3335,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 0.6121333576243396,
1182
+ "grad_norm": 0.59765625,
1183
+ "learning_rate": 7.959183673469388e-05,
1184
+ "loss": 3.276,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 0.6157770085625797,
1189
+ "grad_norm": 0.63671875,
1190
+ "learning_rate": 7.947035957240039e-05,
1191
+ "loss": 3.2263,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 0.6194206595008198,
1196
+ "grad_norm": 0.546875,
1197
+ "learning_rate": 7.934888241010691e-05,
1198
+ "loss": 3.1878,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 0.62306431043906,
1203
+ "grad_norm": 0.625,
1204
+ "learning_rate": 7.922740524781341e-05,
1205
+ "loss": 3.294,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 0.6267079613773,
1210
+ "grad_norm": 0.578125,
1211
+ "learning_rate": 7.910592808551993e-05,
1212
+ "loss": 3.2183,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 0.6303516123155402,
1217
+ "grad_norm": 0.69140625,
1218
+ "learning_rate": 7.898445092322644e-05,
1219
+ "loss": 3.1985,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 0.6339952632537803,
1224
+ "grad_norm": 0.74609375,
1225
+ "learning_rate": 7.886297376093295e-05,
1226
+ "loss": 3.1563,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 0.6376389141920205,
1231
+ "grad_norm": 0.6484375,
1232
+ "learning_rate": 7.874149659863946e-05,
1233
+ "loss": 3.2806,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 0.6412825651302605,
1238
+ "grad_norm": 0.6328125,
1239
+ "learning_rate": 7.862001943634597e-05,
1240
+ "loss": 3.2288,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 0.6449262160685006,
1245
+ "grad_norm": 0.5859375,
1246
+ "learning_rate": 7.849854227405248e-05,
1247
+ "loss": 3.2785,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 0.6485698670067408,
1252
+ "grad_norm": 0.6875,
1253
+ "learning_rate": 7.8377065111759e-05,
1254
+ "loss": 3.2952,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 0.6522135179449808,
1259
+ "grad_norm": 0.6796875,
1260
+ "learning_rate": 7.82555879494655e-05,
1261
+ "loss": 3.1665,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 0.655857168883221,
1266
+ "grad_norm": 0.6796875,
1267
+ "learning_rate": 7.8134110787172e-05,
1268
+ "loss": 3.1984,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 0.6595008198214611,
1273
+ "grad_norm": 0.625,
1274
+ "learning_rate": 7.801263362487853e-05,
1275
+ "loss": 3.2051,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 0.6631444707597012,
1280
+ "grad_norm": 0.6640625,
1281
+ "learning_rate": 7.789115646258504e-05,
1282
+ "loss": 3.2141,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 0.6667881216979413,
1287
+ "grad_norm": 0.59375,
1288
+ "learning_rate": 7.776967930029155e-05,
1289
+ "loss": 3.312,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 0.6704317726361815,
1294
+ "grad_norm": 0.65234375,
1295
+ "learning_rate": 7.764820213799806e-05,
1296
+ "loss": 3.2473,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 0.6740754235744215,
1301
+ "grad_norm": 0.61328125,
1302
+ "learning_rate": 7.752672497570457e-05,
1303
+ "loss": 3.2924,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 0.6777190745126617,
1308
+ "grad_norm": 0.71484375,
1309
+ "learning_rate": 7.740524781341109e-05,
1310
+ "loss": 3.2799,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 0.6813627254509018,
1315
+ "grad_norm": 0.55078125,
1316
+ "learning_rate": 7.72837706511176e-05,
1317
+ "loss": 3.2251,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 0.685006376389142,
1322
+ "grad_norm": 0.70703125,
1323
+ "learning_rate": 7.71622934888241e-05,
1324
+ "loss": 3.209,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 0.688650027327382,
1329
+ "grad_norm": 0.63671875,
1330
+ "learning_rate": 7.704081632653062e-05,
1331
+ "loss": 3.2312,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 0.6922936782656222,
1336
+ "grad_norm": 0.6328125,
1337
+ "learning_rate": 7.691933916423713e-05,
1338
+ "loss": 3.2487,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 0.6959373292038623,
1343
+ "grad_norm": 0.5703125,
1344
+ "learning_rate": 7.679786200194364e-05,
1345
+ "loss": 3.3157,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 0.6995809801421023,
1350
+ "grad_norm": 0.63671875,
1351
+ "learning_rate": 7.667638483965015e-05,
1352
+ "loss": 3.299,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 0.7032246310803425,
1357
+ "grad_norm": 0.69140625,
1358
+ "learning_rate": 7.655490767735666e-05,
1359
+ "loss": 3.2755,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 0.7068682820185826,
1364
+ "grad_norm": 0.625,
1365
+ "learning_rate": 7.643343051506318e-05,
1366
+ "loss": 3.317,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 0.7105119329568227,
1371
+ "grad_norm": 0.55078125,
1372
+ "learning_rate": 7.631195335276969e-05,
1373
+ "loss": 3.1871,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 0.7141555838950628,
1378
+ "grad_norm": 0.74609375,
1379
+ "learning_rate": 7.619047619047618e-05,
1380
+ "loss": 3.2405,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 0.717799234833303,
1385
+ "grad_norm": 0.69921875,
1386
+ "learning_rate": 7.606899902818271e-05,
1387
+ "loss": 3.3068,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 0.7214428857715431,
1392
+ "grad_norm": 0.578125,
1393
+ "learning_rate": 7.594752186588922e-05,
1394
+ "loss": 3.335,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 0.7250865367097832,
1399
+ "grad_norm": 0.6484375,
1400
+ "learning_rate": 7.582604470359573e-05,
1401
+ "loss": 3.2617,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 0.7287301876480233,
1406
+ "grad_norm": 0.5234375,
1407
+ "learning_rate": 7.570456754130224e-05,
1408
+ "loss": 3.2335,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 0.7323738385862635,
1413
+ "grad_norm": 0.640625,
1414
+ "learning_rate": 7.558309037900875e-05,
1415
+ "loss": 3.2604,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 0.7360174895245035,
1420
+ "grad_norm": 0.57421875,
1421
+ "learning_rate": 7.546161321671527e-05,
1422
+ "loss": 3.2632,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 0.7396611404627437,
1427
+ "grad_norm": 0.61328125,
1428
+ "learning_rate": 7.534013605442178e-05,
1429
+ "loss": 3.2184,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 0.7433047914009838,
1434
+ "grad_norm": 0.6171875,
1435
+ "learning_rate": 7.521865889212827e-05,
1436
+ "loss": 3.2848,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 0.7469484423392239,
1441
+ "grad_norm": 0.6484375,
1442
+ "learning_rate": 7.50971817298348e-05,
1443
+ "loss": 3.2473,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 0.750592093277464,
1448
+ "grad_norm": 0.6953125,
1449
+ "learning_rate": 7.49757045675413e-05,
1450
+ "loss": 3.195,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 0.7542357442157042,
1455
+ "grad_norm": 0.73046875,
1456
+ "learning_rate": 7.485422740524782e-05,
1457
+ "loss": 3.2248,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 0.7578793951539442,
1462
+ "grad_norm": 0.5390625,
1463
+ "learning_rate": 7.473275024295433e-05,
1464
+ "loss": 3.1511,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 0.7615230460921844,
1469
+ "grad_norm": 0.66796875,
1470
+ "learning_rate": 7.461127308066083e-05,
1471
+ "loss": 3.2719,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 0.7651666970304245,
1476
+ "grad_norm": 0.57421875,
1477
+ "learning_rate": 7.448979591836736e-05,
1478
+ "loss": 3.2339,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 0.7688103479686647,
1483
+ "grad_norm": 0.61328125,
1484
+ "learning_rate": 7.436831875607387e-05,
1485
+ "loss": 3.2863,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 0.7724539989069047,
1490
+ "grad_norm": 0.55859375,
1491
+ "learning_rate": 7.424684159378036e-05,
1492
+ "loss": 3.2057,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 0.7760976498451448,
1497
+ "grad_norm": 0.73046875,
1498
+ "learning_rate": 7.412536443148689e-05,
1499
+ "loss": 3.2397,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 0.779741300783385,
1504
+ "grad_norm": 0.59375,
1505
+ "learning_rate": 7.40038872691934e-05,
1506
+ "loss": 3.2323,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 0.783384951721625,
1511
+ "grad_norm": 0.63671875,
1512
+ "learning_rate": 7.38824101068999e-05,
1513
+ "loss": 3.2764,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 0.7870286026598652,
1518
+ "grad_norm": 0.60546875,
1519
+ "learning_rate": 7.376093294460641e-05,
1520
+ "loss": 3.2668,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 0.7906722535981053,
1525
+ "grad_norm": 0.63671875,
1526
+ "learning_rate": 7.363945578231292e-05,
1527
+ "loss": 3.2953,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 0.7943159045363454,
1532
+ "grad_norm": 0.5625,
1533
+ "learning_rate": 7.351797862001945e-05,
1534
+ "loss": 3.1915,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 0.7979595554745855,
1539
+ "grad_norm": 0.66015625,
1540
+ "learning_rate": 7.339650145772596e-05,
1541
+ "loss": 3.2622,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 0.8016032064128257,
1546
+ "grad_norm": 0.6171875,
1547
+ "learning_rate": 7.327502429543247e-05,
1548
+ "loss": 3.2522,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 0.8052468573510657,
1553
+ "grad_norm": 0.64453125,
1554
+ "learning_rate": 7.315354713313898e-05,
1555
+ "loss": 3.1673,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 0.8088905082893059,
1560
+ "grad_norm": 0.625,
1561
+ "learning_rate": 7.303206997084548e-05,
1562
+ "loss": 3.2722,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 0.812534159227546,
1567
+ "grad_norm": 0.6640625,
1568
+ "learning_rate": 7.2910592808552e-05,
1569
+ "loss": 3.2377,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 0.8161778101657862,
1574
+ "grad_norm": 0.6171875,
1575
+ "learning_rate": 7.27891156462585e-05,
1576
+ "loss": 3.179,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 0.8198214611040262,
1581
+ "grad_norm": 0.57421875,
1582
+ "learning_rate": 7.266763848396501e-05,
1583
+ "loss": 3.2588,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 0.8234651120422664,
1588
+ "grad_norm": 0.578125,
1589
+ "learning_rate": 7.254616132167152e-05,
1590
+ "loss": 3.2664,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 0.8271087629805065,
1595
+ "grad_norm": 0.73046875,
1596
+ "learning_rate": 7.242468415937805e-05,
1597
+ "loss": 3.2515,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 0.8307524139187465,
1602
+ "grad_norm": 0.6328125,
1603
+ "learning_rate": 7.230320699708455e-05,
1604
+ "loss": 3.2102,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 0.8343960648569867,
1609
+ "grad_norm": 0.6484375,
1610
+ "learning_rate": 7.218172983479106e-05,
1611
+ "loss": 3.246,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 0.8380397157952268,
1616
+ "grad_norm": 0.58203125,
1617
+ "learning_rate": 7.206025267249757e-05,
1618
+ "loss": 3.3321,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 0.8416833667334669,
1623
+ "grad_norm": 0.59765625,
1624
+ "learning_rate": 7.193877551020408e-05,
1625
+ "loss": 3.0889,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 0.845327017671707,
1630
+ "grad_norm": 0.66015625,
1631
+ "learning_rate": 7.18172983479106e-05,
1632
+ "loss": 3.2811,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 0.8489706686099472,
1637
+ "grad_norm": 0.65234375,
1638
+ "learning_rate": 7.16958211856171e-05,
1639
+ "loss": 3.1688,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 0.8526143195481873,
1644
+ "grad_norm": 0.76171875,
1645
+ "learning_rate": 7.157434402332361e-05,
1646
+ "loss": 3.2495,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 0.8562579704864274,
1651
+ "grad_norm": 0.6484375,
1652
+ "learning_rate": 7.145286686103013e-05,
1653
+ "loss": 3.1742,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 0.8599016214246675,
1658
+ "grad_norm": 0.5859375,
1659
+ "learning_rate": 7.133138969873664e-05,
1660
+ "loss": 3.2293,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 0.8635452723629077,
1665
+ "grad_norm": 0.640625,
1666
+ "learning_rate": 7.120991253644315e-05,
1667
+ "loss": 3.2574,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 0.8671889233011477,
1672
+ "grad_norm": 0.55078125,
1673
+ "learning_rate": 7.108843537414966e-05,
1674
+ "loss": 3.2496,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 0.8708325742393879,
1679
+ "grad_norm": 0.7109375,
1680
+ "learning_rate": 7.096695821185617e-05,
1681
+ "loss": 3.2527,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 0.874476225177628,
1686
+ "grad_norm": 0.6640625,
1687
+ "learning_rate": 7.08454810495627e-05,
1688
+ "loss": 3.1984,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 0.8781198761158681,
1693
+ "grad_norm": 0.58984375,
1694
+ "learning_rate": 7.072400388726919e-05,
1695
+ "loss": 3.2517,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 0.8817635270541082,
1700
+ "grad_norm": 0.6171875,
1701
+ "learning_rate": 7.06025267249757e-05,
1702
+ "loss": 3.2105,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 0.8854071779923484,
1707
+ "grad_norm": 0.62890625,
1708
+ "learning_rate": 7.048104956268222e-05,
1709
+ "loss": 3.2125,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 0.8890508289305884,
1714
+ "grad_norm": 0.72265625,
1715
+ "learning_rate": 7.035957240038873e-05,
1716
+ "loss": 3.255,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 0.8926944798688285,
1721
+ "grad_norm": 0.671875,
1722
+ "learning_rate": 7.023809523809524e-05,
1723
+ "loss": 3.3331,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 0.8963381308070687,
1728
+ "grad_norm": 0.65234375,
1729
+ "learning_rate": 7.011661807580175e-05,
1730
+ "loss": 3.3545,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 0.8999817817453089,
1735
+ "grad_norm": 0.62890625,
1736
+ "learning_rate": 6.999514091350826e-05,
1737
+ "loss": 3.2776,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 0.9036254326835489,
1742
+ "grad_norm": 0.76953125,
1743
+ "learning_rate": 6.987366375121478e-05,
1744
+ "loss": 3.2331,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 0.907269083621789,
1749
+ "grad_norm": 0.78515625,
1750
+ "learning_rate": 6.975218658892128e-05,
1751
+ "loss": 3.2803,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 0.9109127345600292,
1756
+ "grad_norm": 0.671875,
1757
+ "learning_rate": 6.963070942662779e-05,
1758
+ "loss": 3.256,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 0.9145563854982692,
1763
+ "grad_norm": 0.59765625,
1764
+ "learning_rate": 6.950923226433431e-05,
1765
+ "loss": 3.2896,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 0.9182000364365094,
1770
+ "grad_norm": 0.62890625,
1771
+ "learning_rate": 6.938775510204082e-05,
1772
+ "loss": 3.2555,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 0.9218436873747495,
1777
+ "grad_norm": 0.7421875,
1778
+ "learning_rate": 6.926627793974733e-05,
1779
+ "loss": 3.2682,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 0.9254873383129896,
1784
+ "grad_norm": 0.671875,
1785
+ "learning_rate": 6.914480077745384e-05,
1786
+ "loss": 3.1564,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 0.9291309892512297,
1791
+ "grad_norm": 0.6484375,
1792
+ "learning_rate": 6.902332361516035e-05,
1793
+ "loss": 3.1445,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 0.9327746401894699,
1798
+ "grad_norm": 0.51953125,
1799
+ "learning_rate": 6.890184645286687e-05,
1800
+ "loss": 3.2515,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 0.9364182911277099,
1805
+ "grad_norm": 0.65625,
1806
+ "learning_rate": 6.878036929057337e-05,
1807
+ "loss": 3.1962,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 0.9400619420659501,
1812
+ "grad_norm": 0.59375,
1813
+ "learning_rate": 6.865889212827988e-05,
1814
+ "loss": 3.3199,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 0.9437055930041902,
1819
+ "grad_norm": 0.65234375,
1820
+ "learning_rate": 6.85374149659864e-05,
1821
+ "loss": 3.264,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 0.9473492439424304,
1826
+ "grad_norm": 0.63671875,
1827
+ "learning_rate": 6.841593780369291e-05,
1828
+ "loss": 3.1853,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 0.9509928948806704,
1833
+ "grad_norm": 0.72265625,
1834
+ "learning_rate": 6.829446064139942e-05,
1835
+ "loss": 3.3017,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 0.9546365458189106,
1840
+ "grad_norm": 0.6953125,
1841
+ "learning_rate": 6.817298347910593e-05,
1842
+ "loss": 3.2358,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 0.9582801967571507,
1847
+ "grad_norm": 0.6328125,
1848
+ "learning_rate": 6.805150631681244e-05,
1849
+ "loss": 3.2854,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 0.9619238476953907,
1854
+ "grad_norm": 0.5859375,
1855
+ "learning_rate": 6.793002915451895e-05,
1856
+ "loss": 3.1873,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 0.9655674986336309,
1861
+ "grad_norm": 0.59375,
1862
+ "learning_rate": 6.780855199222547e-05,
1863
+ "loss": 3.2274,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 0.969211149571871,
1868
+ "grad_norm": 0.63671875,
1869
+ "learning_rate": 6.768707482993197e-05,
1870
+ "loss": 3.2037,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 0.9728548005101111,
1875
+ "grad_norm": 0.5703125,
1876
+ "learning_rate": 6.756559766763849e-05,
1877
+ "loss": 3.3132,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 0.9764984514483512,
1882
+ "grad_norm": 0.72265625,
1883
+ "learning_rate": 6.7444120505345e-05,
1884
+ "loss": 3.2734,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 0.9801421023865914,
1889
+ "grad_norm": 0.70703125,
1890
+ "learning_rate": 6.732264334305151e-05,
1891
+ "loss": 3.1784,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 0.9837857533248315,
1896
+ "grad_norm": 0.57421875,
1897
+ "learning_rate": 6.720116618075802e-05,
1898
+ "loss": 3.2181,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 0.9874294042630716,
1903
+ "grad_norm": 0.6953125,
1904
+ "learning_rate": 6.707968901846453e-05,
1905
+ "loss": 3.2676,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 0.9910730552013117,
1910
+ "grad_norm": 0.6875,
1911
+ "learning_rate": 6.695821185617104e-05,
1912
+ "loss": 3.1952,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 0.9947167061395519,
1917
+ "grad_norm": 0.609375,
1918
+ "learning_rate": 6.683673469387756e-05,
1919
+ "loss": 3.3135,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 0.9983603570777919,
1924
+ "grad_norm": 0.6484375,
1925
+ "learning_rate": 6.671525753158406e-05,
1926
+ "loss": 3.2643,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 1.002004008016032,
1931
+ "grad_norm": 0.6015625,
1932
+ "learning_rate": 6.659378036929058e-05,
1933
+ "loss": 3.1996,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 1.0056476589542722,
1938
+ "grad_norm": 0.75,
1939
+ "learning_rate": 6.647230320699709e-05,
1940
+ "loss": 3.0862,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 1.0092913098925123,
1945
+ "grad_norm": 0.671875,
1946
+ "learning_rate": 6.63508260447036e-05,
1947
+ "loss": 3.1886,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 1.0129349608307525,
1952
+ "grad_norm": 0.65625,
1953
+ "learning_rate": 6.622934888241011e-05,
1954
+ "loss": 3.1478,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 1.0165786117689926,
1959
+ "grad_norm": 0.69921875,
1960
+ "learning_rate": 6.610787172011662e-05,
1961
+ "loss": 3.1577,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 1.0202222627072326,
1966
+ "grad_norm": 0.77734375,
1967
+ "learning_rate": 6.598639455782313e-05,
1968
+ "loss": 3.148,
1969
+ "step": 2800
1970
+ },
1971
+ {
1972
+ "epoch": 1.0238659136454729,
1973
+ "grad_norm": 0.640625,
1974
+ "learning_rate": 6.586491739552965e-05,
1975
+ "loss": 3.1971,
1976
+ "step": 2810
1977
+ },
1978
+ {
1979
+ "epoch": 1.027509564583713,
1980
+ "grad_norm": 0.58984375,
1981
+ "learning_rate": 6.574344023323615e-05,
1982
+ "loss": 3.1351,
1983
+ "step": 2820
1984
+ },
1985
+ {
1986
+ "epoch": 1.031153215521953,
1987
+ "grad_norm": 0.734375,
1988
+ "learning_rate": 6.562196307094267e-05,
1989
+ "loss": 3.2304,
1990
+ "step": 2830
1991
+ },
1992
+ {
1993
+ "epoch": 1.0347968664601932,
1994
+ "grad_norm": 0.71484375,
1995
+ "learning_rate": 6.550048590864918e-05,
1996
+ "loss": 3.1582,
1997
+ "step": 2840
1998
+ },
1999
+ {
2000
+ "epoch": 1.0384405173984332,
2001
+ "grad_norm": 0.71875,
2002
+ "learning_rate": 6.537900874635569e-05,
2003
+ "loss": 3.1183,
2004
+ "step": 2850
2005
+ },
2006
+ {
2007
+ "epoch": 1.0420841683366733,
2008
+ "grad_norm": 0.8046875,
2009
+ "learning_rate": 6.52575315840622e-05,
2010
+ "loss": 3.2056,
2011
+ "step": 2860
2012
+ },
2013
+ {
2014
+ "epoch": 1.0457278192749135,
2015
+ "grad_norm": 0.765625,
2016
+ "learning_rate": 6.513605442176871e-05,
2017
+ "loss": 3.1694,
2018
+ "step": 2870
2019
+ },
2020
+ {
2021
+ "epoch": 1.0493714702131536,
2022
+ "grad_norm": 0.890625,
2023
+ "learning_rate": 6.501457725947522e-05,
2024
+ "loss": 3.1428,
2025
+ "step": 2880
2026
+ },
2027
+ {
2028
+ "epoch": 1.0530151211513936,
2029
+ "grad_norm": 0.65625,
2030
+ "learning_rate": 6.489310009718174e-05,
2031
+ "loss": 3.1052,
2032
+ "step": 2890
2033
+ },
2034
+ {
2035
+ "epoch": 1.0566587720896339,
2036
+ "grad_norm": 0.83203125,
2037
+ "learning_rate": 6.477162293488824e-05,
2038
+ "loss": 3.1195,
2039
+ "step": 2900
2040
+ },
2041
+ {
2042
+ "epoch": 1.060302423027874,
2043
+ "grad_norm": 0.7421875,
2044
+ "learning_rate": 6.465014577259475e-05,
2045
+ "loss": 3.2278,
2046
+ "step": 2910
2047
+ },
2048
+ {
2049
+ "epoch": 1.063946073966114,
2050
+ "grad_norm": 0.71875,
2051
+ "learning_rate": 6.452866861030127e-05,
2052
+ "loss": 3.1563,
2053
+ "step": 2920
2054
+ },
2055
+ {
2056
+ "epoch": 1.0675897249043542,
2057
+ "grad_norm": 0.69140625,
2058
+ "learning_rate": 6.440719144800778e-05,
2059
+ "loss": 3.1505,
2060
+ "step": 2930
2061
+ },
2062
+ {
2063
+ "epoch": 1.0712333758425943,
2064
+ "grad_norm": 0.8515625,
2065
+ "learning_rate": 6.428571428571429e-05,
2066
+ "loss": 3.1681,
2067
+ "step": 2940
2068
+ },
2069
+ {
2070
+ "epoch": 1.0748770267808343,
2071
+ "grad_norm": 0.71484375,
2072
+ "learning_rate": 6.41642371234208e-05,
2073
+ "loss": 3.17,
2074
+ "step": 2950
2075
+ },
2076
+ {
2077
+ "epoch": 1.0785206777190746,
2078
+ "grad_norm": 0.90625,
2079
+ "learning_rate": 6.40427599611273e-05,
2080
+ "loss": 3.1775,
2081
+ "step": 2960
2082
+ },
2083
+ {
2084
+ "epoch": 1.0821643286573146,
2085
+ "grad_norm": 0.73828125,
2086
+ "learning_rate": 6.392128279883383e-05,
2087
+ "loss": 3.0921,
2088
+ "step": 2970
2089
+ },
2090
+ {
2091
+ "epoch": 1.0858079795955549,
2092
+ "grad_norm": 0.75390625,
2093
+ "learning_rate": 6.379980563654034e-05,
2094
+ "loss": 3.1666,
2095
+ "step": 2980
2096
+ },
2097
+ {
2098
+ "epoch": 1.089451630533795,
2099
+ "grad_norm": 0.80859375,
2100
+ "learning_rate": 6.367832847424684e-05,
2101
+ "loss": 3.1935,
2102
+ "step": 2990
2103
+ },
2104
+ {
2105
+ "epoch": 1.093095281472035,
2106
+ "grad_norm": 0.67578125,
2107
+ "learning_rate": 6.355685131195336e-05,
2108
+ "loss": 3.0588,
2109
+ "step": 3000
2110
+ },
2111
+ {
2112
+ "epoch": 1.096738932410275,
2113
+ "grad_norm": 0.74609375,
2114
+ "learning_rate": 6.343537414965987e-05,
2115
+ "loss": 3.1867,
2116
+ "step": 3010
2117
+ },
2118
+ {
2119
+ "epoch": 1.1003825833485152,
2120
+ "grad_norm": 0.8828125,
2121
+ "learning_rate": 6.331389698736638e-05,
2122
+ "loss": 3.162,
2123
+ "step": 3020
2124
+ },
2125
+ {
2126
+ "epoch": 1.1040262342867553,
2127
+ "grad_norm": 0.78515625,
2128
+ "learning_rate": 6.319241982507289e-05,
2129
+ "loss": 3.1737,
2130
+ "step": 3030
2131
+ },
2132
+ {
2133
+ "epoch": 1.1076698852249955,
2134
+ "grad_norm": 0.76171875,
2135
+ "learning_rate": 6.30709426627794e-05,
2136
+ "loss": 3.1974,
2137
+ "step": 3040
2138
+ },
2139
+ {
2140
+ "epoch": 1.1113135361632356,
2141
+ "grad_norm": 0.7734375,
2142
+ "learning_rate": 6.294946550048592e-05,
2143
+ "loss": 3.1584,
2144
+ "step": 3050
2145
+ },
2146
+ {
2147
+ "epoch": 1.1149571871014756,
2148
+ "grad_norm": 0.74609375,
2149
+ "learning_rate": 6.282798833819243e-05,
2150
+ "loss": 3.1856,
2151
+ "step": 3060
2152
+ },
2153
+ {
2154
+ "epoch": 1.1186008380397159,
2155
+ "grad_norm": 0.7109375,
2156
+ "learning_rate": 6.270651117589892e-05,
2157
+ "loss": 3.177,
2158
+ "step": 3070
2159
+ },
2160
+ {
2161
+ "epoch": 1.122244488977956,
2162
+ "grad_norm": 0.85546875,
2163
+ "learning_rate": 6.258503401360545e-05,
2164
+ "loss": 3.2028,
2165
+ "step": 3080
2166
+ },
2167
+ {
2168
+ "epoch": 1.125888139916196,
2169
+ "grad_norm": 0.93359375,
2170
+ "learning_rate": 6.246355685131196e-05,
2171
+ "loss": 3.2031,
2172
+ "step": 3090
2173
+ },
2174
+ {
2175
+ "epoch": 1.1295317908544362,
2176
+ "grad_norm": 0.82421875,
2177
+ "learning_rate": 6.234207968901847e-05,
2178
+ "loss": 3.0629,
2179
+ "step": 3100
2180
+ },
2181
+ {
2182
+ "epoch": 1.1331754417926763,
2183
+ "grad_norm": 0.6875,
2184
+ "learning_rate": 6.222060252672498e-05,
2185
+ "loss": 3.0927,
2186
+ "step": 3110
2187
+ },
2188
+ {
2189
+ "epoch": 1.1368190927309163,
2190
+ "grad_norm": 0.765625,
2191
+ "learning_rate": 6.209912536443149e-05,
2192
+ "loss": 3.2134,
2193
+ "step": 3120
2194
+ },
2195
+ {
2196
+ "epoch": 1.1404627436691566,
2197
+ "grad_norm": 0.84765625,
2198
+ "learning_rate": 6.197764820213801e-05,
2199
+ "loss": 3.2027,
2200
+ "step": 3130
2201
+ },
2202
+ {
2203
+ "epoch": 1.1441063946073966,
2204
+ "grad_norm": 0.70703125,
2205
+ "learning_rate": 6.185617103984452e-05,
2206
+ "loss": 3.1448,
2207
+ "step": 3140
2208
+ },
2209
+ {
2210
+ "epoch": 1.1477500455456366,
2211
+ "grad_norm": 0.70703125,
2212
+ "learning_rate": 6.173469387755101e-05,
2213
+ "loss": 3.1713,
2214
+ "step": 3150
2215
+ },
2216
+ {
2217
+ "epoch": 1.151393696483877,
2218
+ "grad_norm": 0.77734375,
2219
+ "learning_rate": 6.161321671525754e-05,
2220
+ "loss": 3.1612,
2221
+ "step": 3160
2222
+ },
2223
+ {
2224
+ "epoch": 1.155037347422117,
2225
+ "grad_norm": 0.79296875,
2226
+ "learning_rate": 6.149173955296405e-05,
2227
+ "loss": 3.1934,
2228
+ "step": 3170
2229
+ },
2230
+ {
2231
+ "epoch": 1.158680998360357,
2232
+ "grad_norm": 0.89453125,
2233
+ "learning_rate": 6.137026239067056e-05,
2234
+ "loss": 3.1231,
2235
+ "step": 3180
2236
+ },
2237
+ {
2238
+ "epoch": 1.1623246492985972,
2239
+ "grad_norm": 0.75390625,
2240
+ "learning_rate": 6.124878522837707e-05,
2241
+ "loss": 3.1606,
2242
+ "step": 3190
2243
+ },
2244
+ {
2245
+ "epoch": 1.1659683002368373,
2246
+ "grad_norm": 0.75,
2247
+ "learning_rate": 6.112730806608357e-05,
2248
+ "loss": 3.135,
2249
+ "step": 3200
2250
+ },
2251
+ {
2252
+ "epoch": 1.1696119511750775,
2253
+ "grad_norm": 0.78125,
2254
+ "learning_rate": 6.10058309037901e-05,
2255
+ "loss": 3.1592,
2256
+ "step": 3210
2257
+ },
2258
+ {
2259
+ "epoch": 1.1732556021133176,
2260
+ "grad_norm": 0.84375,
2261
+ "learning_rate": 6.08843537414966e-05,
2262
+ "loss": 3.2429,
2263
+ "step": 3220
2264
+ },
2265
+ {
2266
+ "epoch": 1.1768992530515576,
2267
+ "grad_norm": 0.921875,
2268
+ "learning_rate": 6.076287657920311e-05,
2269
+ "loss": 3.1182,
2270
+ "step": 3230
2271
+ },
2272
+ {
2273
+ "epoch": 1.1805429039897977,
2274
+ "grad_norm": 0.83203125,
2275
+ "learning_rate": 6.0641399416909626e-05,
2276
+ "loss": 3.2273,
2277
+ "step": 3240
2278
+ },
2279
+ {
2280
+ "epoch": 1.184186554928038,
2281
+ "grad_norm": 0.734375,
2282
+ "learning_rate": 6.0519922254616135e-05,
2283
+ "loss": 3.2101,
2284
+ "step": 3250
2285
+ },
2286
+ {
2287
+ "epoch": 1.187830205866278,
2288
+ "grad_norm": 0.76953125,
2289
+ "learning_rate": 6.0398445092322645e-05,
2290
+ "loss": 3.1181,
2291
+ "step": 3260
2292
+ },
2293
+ {
2294
+ "epoch": 1.1914738568045182,
2295
+ "grad_norm": 0.7265625,
2296
+ "learning_rate": 6.027696793002916e-05,
2297
+ "loss": 3.1349,
2298
+ "step": 3270
2299
+ },
2300
+ {
2301
+ "epoch": 1.1951175077427583,
2302
+ "grad_norm": 0.90234375,
2303
+ "learning_rate": 6.015549076773567e-05,
2304
+ "loss": 3.152,
2305
+ "step": 3280
2306
+ },
2307
+ {
2308
+ "epoch": 1.1987611586809983,
2309
+ "grad_norm": 0.75390625,
2310
+ "learning_rate": 6.003401360544217e-05,
2311
+ "loss": 3.1806,
2312
+ "step": 3290
2313
+ },
2314
+ {
2315
+ "epoch": 1.2024048096192386,
2316
+ "grad_norm": 0.85546875,
2317
+ "learning_rate": 5.991253644314869e-05,
2318
+ "loss": 3.1708,
2319
+ "step": 3300
2320
+ },
2321
+ {
2322
+ "epoch": 1.2060484605574786,
2323
+ "grad_norm": 0.78125,
2324
+ "learning_rate": 5.97910592808552e-05,
2325
+ "loss": 3.114,
2326
+ "step": 3310
2327
+ },
2328
+ {
2329
+ "epoch": 1.2096921114957186,
2330
+ "grad_norm": 0.90625,
2331
+ "learning_rate": 5.9669582118561715e-05,
2332
+ "loss": 3.1852,
2333
+ "step": 3320
2334
+ },
2335
+ {
2336
+ "epoch": 1.213335762433959,
2337
+ "grad_norm": 0.7578125,
2338
+ "learning_rate": 5.9548104956268225e-05,
2339
+ "loss": 3.2373,
2340
+ "step": 3330
2341
+ },
2342
+ {
2343
+ "epoch": 1.216979413372199,
2344
+ "grad_norm": 0.8046875,
2345
+ "learning_rate": 5.9426627793974734e-05,
2346
+ "loss": 3.2133,
2347
+ "step": 3340
2348
+ },
2349
+ {
2350
+ "epoch": 1.220623064310439,
2351
+ "grad_norm": 0.7890625,
2352
+ "learning_rate": 5.930515063168125e-05,
2353
+ "loss": 3.2556,
2354
+ "step": 3350
2355
+ },
2356
+ {
2357
+ "epoch": 1.2242667152486792,
2358
+ "grad_norm": 0.71875,
2359
+ "learning_rate": 5.918367346938776e-05,
2360
+ "loss": 3.193,
2361
+ "step": 3360
2362
+ },
2363
+ {
2364
+ "epoch": 1.2279103661869193,
2365
+ "grad_norm": 0.71484375,
2366
+ "learning_rate": 5.906219630709426e-05,
2367
+ "loss": 3.1619,
2368
+ "step": 3370
2369
+ },
2370
+ {
2371
+ "epoch": 1.2315540171251593,
2372
+ "grad_norm": 0.94140625,
2373
+ "learning_rate": 5.8940719144800785e-05,
2374
+ "loss": 3.1265,
2375
+ "step": 3380
2376
+ },
2377
+ {
2378
+ "epoch": 1.2351976680633996,
2379
+ "grad_norm": 0.80859375,
2380
+ "learning_rate": 5.881924198250729e-05,
2381
+ "loss": 3.2705,
2382
+ "step": 3390
2383
+ },
2384
+ {
2385
+ "epoch": 1.2388413190016396,
2386
+ "grad_norm": 0.77734375,
2387
+ "learning_rate": 5.8697764820213804e-05,
2388
+ "loss": 3.1545,
2389
+ "step": 3400
2390
+ },
2391
+ {
2392
+ "epoch": 1.2424849699398797,
2393
+ "grad_norm": 1.015625,
2394
+ "learning_rate": 5.8576287657920314e-05,
2395
+ "loss": 3.1632,
2396
+ "step": 3410
2397
+ },
2398
+ {
2399
+ "epoch": 1.24612862087812,
2400
+ "grad_norm": 0.75390625,
2401
+ "learning_rate": 5.845481049562682e-05,
2402
+ "loss": 3.1776,
2403
+ "step": 3420
2404
+ },
2405
+ {
2406
+ "epoch": 1.24977227181636,
2407
+ "grad_norm": 0.90625,
2408
+ "learning_rate": 5.833333333333334e-05,
2409
+ "loss": 3.1733,
2410
+ "step": 3430
2411
+ },
2412
+ {
2413
+ "epoch": 1.2534159227546002,
2414
+ "grad_norm": 0.890625,
2415
+ "learning_rate": 5.821185617103985e-05,
2416
+ "loss": 3.0226,
2417
+ "step": 3440
2418
+ },
2419
+ {
2420
+ "epoch": 1.2570595736928403,
2421
+ "grad_norm": 0.8046875,
2422
+ "learning_rate": 5.809037900874635e-05,
2423
+ "loss": 3.156,
2424
+ "step": 3450
2425
+ },
2426
+ {
2427
+ "epoch": 1.2607032246310803,
2428
+ "grad_norm": 0.85546875,
2429
+ "learning_rate": 5.7968901846452875e-05,
2430
+ "loss": 3.0929,
2431
+ "step": 3460
2432
+ },
2433
+ {
2434
+ "epoch": 1.2643468755693203,
2435
+ "grad_norm": 0.70703125,
2436
+ "learning_rate": 5.784742468415938e-05,
2437
+ "loss": 3.1027,
2438
+ "step": 3470
2439
+ },
2440
+ {
2441
+ "epoch": 1.2679905265075606,
2442
+ "grad_norm": 0.76171875,
2443
+ "learning_rate": 5.77259475218659e-05,
2444
+ "loss": 3.2188,
2445
+ "step": 3480
2446
+ },
2447
+ {
2448
+ "epoch": 1.2716341774458007,
2449
+ "grad_norm": 0.8671875,
2450
+ "learning_rate": 5.76044703595724e-05,
2451
+ "loss": 3.0835,
2452
+ "step": 3490
2453
+ },
2454
+ {
2455
+ "epoch": 1.275277828384041,
2456
+ "grad_norm": 0.82421875,
2457
+ "learning_rate": 5.748299319727891e-05,
2458
+ "loss": 3.0709,
2459
+ "step": 3500
2460
+ }
2461
+ ],
2462
+ "logging_steps": 10,
2463
+ "max_steps": 8232,
2464
+ "num_input_tokens_seen": 0,
2465
+ "num_train_epochs": 3,
2466
+ "save_steps": 500,
2467
+ "stateful_callbacks": {
2468
+ "TrainerControl": {
2469
+ "args": {
2470
+ "should_epoch_stop": false,
2471
+ "should_evaluate": false,
2472
+ "should_log": false,
2473
+ "should_save": true,
2474
+ "should_training_stop": false
2475
+ },
2476
+ "attributes": {}
2477
+ }
2478
+ },
2479
+ "total_flos": 7.654179964883558e+17,
2480
+ "train_batch_size": 4,
2481
+ "trial_name": null,
2482
+ "trial_params": null
2483
+ }
output/checkpoint-2/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33a47aea173545de6282df593b843ae6550627d1751fcad16521a60227b61fa5
3
+ size 5176
output/checkpoint-3/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /root/autodl-tmp/qwen/Qwen2-7B-Instruct
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
output/checkpoint-3/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/root/autodl-tmp/qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "q_proj",
28
+ "down_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
output/checkpoint-3/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddedc05c1ab282501860de4a45c292cedbc7fbeff1402ca178cecadf891488b3
3
+ size 40422208
output/checkpoint-3/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37d6328fd7b7c78aa8b2269037a24eb8b87baf9b085bbf7e908de3d78ba5eef3
3
+ size 81069930
output/checkpoint-3/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f00b6e38fcee82af89662b775212edab534ba0e521ae476cf4f25f0078bcf30
3
+ size 14244
output/checkpoint-3/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5d3d4eb70e5b8fc15a0e6c39e836bb5fd695f168798b825088f98771ca50916
3
+ size 1064
output/checkpoint-3/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
output/checkpoint-3/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33a47aea173545de6282df593b843ae6550627d1751fcad16521a60227b61fa5
3
+ size 5176
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": ["<|im_start|>", "<|im_end|>"],
30
+ "bos_token": null,
31
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "<|im_end|>",
34
+ "errors": "replace",
35
+ "model_max_length": 131072,
36
+ "pad_token": "<|endoftext|>",
37
+ "split_special_tokens": false,
38
+ "tokenizer_class": "Qwen2Tokenizer",
39
+ "unk_token": null
40
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff