--- base_model: microsoft/wavlm-base-sv library_name: transformers.js --- https://huggingface.co./microsoft/wavlm-base-sv with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co./docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Speaker verification w/ `Xenova/wavlm-base-sv`. ```js import { AutoProcessor, AutoModel, read_audio, cos_sim } from '@xenova/transformers'; // Load processor and model const processor = await AutoProcessor.from_pretrained('Xenova/wavlm-base-sv'); const model = await AutoModel.from_pretrained('Xenova/wavlm-base-sv'); // Helper function to compute speaker embedding from audio URL async function compute_embedding(url) { const audio = await read_audio(url, 16000); const inputs = await processor(audio); const { embeddings } = await model(inputs); return embeddings.data; } // Generate speaker embeddings const BASE_URL = 'https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/sv_speaker'; const speaker_1_1 = await compute_embedding(`${BASE_URL}-1_1.wav`); const speaker_1_2 = await compute_embedding(`${BASE_URL}-1_2.wav`); const speaker_2_1 = await compute_embedding(`${BASE_URL}-2_1.wav`); const speaker_2_2 = await compute_embedding(`${BASE_URL}-2_2.wav`); // Compute similarity scores console.log(cos_sim(speaker_1_1, speaker_1_2)); // 0.9339586437268694 (Both are speaker 1) console.log(cos_sim(speaker_1_2, speaker_2_1)); // 0.7096775310911547 (Different speakers) console.log(cos_sim(speaker_2_1, speaker_2_2)); // 0.9603887462630838 (Both are speaker 2) ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co./docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).