Joshua Lochner
commited on
Commit
·
8e622c8
1
Parent(s):
aacb405
Update pipeline.py
Browse files- pipeline.py +282 -0
pipeline.py
CHANGED
@@ -9,6 +9,280 @@ import os
|
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
class PreTrainedPipeline():
|
@@ -18,6 +292,13 @@ class PreTrainedPipeline():
|
|
18 |
|
19 |
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# convert img to numpy array, resize and normalize to make the prediction
|
22 |
img = np.array(inputs)
|
23 |
|
@@ -74,5 +355,6 @@ class PreTrainedPipeline():
|
|
74 |
"label": f"LABEL_{cls}",
|
75 |
"mask": mask_codes[f"mask_{cls}"],
|
76 |
"score": 1.0,
|
|
|
77 |
})
|
78 |
return labels
|
|
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
11 |
|
12 |
+
import youtube_transcript_api2
|
13 |
+
import json
|
14 |
+
import re
|
15 |
+
import requests
|
16 |
+
from transformers import (
|
17 |
+
AutoModelForSequenceClassification,
|
18 |
+
AutoTokenizer,
|
19 |
+
TextClassificationPipeline,
|
20 |
+
)
|
21 |
+
from typing import Any, Dict, List
|
22 |
+
|
23 |
+
CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']
|
24 |
+
|
25 |
+
PROFANITY_RAW = '[ __ ]' # How YouTube transcribes profanity
|
26 |
+
PROFANITY_CONVERTED = '*****' # Safer version for tokenizing
|
27 |
+
|
28 |
+
NUM_DECIMALS = 3
|
29 |
+
|
30 |
+
# https://www.fincher.org/Utilities/CountryLanguageList.shtml
|
31 |
+
# https://lingohub.com/developers/supported-locales/language-designators-with-regions
|
32 |
+
LANGUAGE_PREFERENCE_LIST = ['en-GB', 'en-US', 'en-CA', 'en-AU', 'en-NZ', 'en-ZA',
|
33 |
+
'en-IE', 'en-IN', 'en-JM', 'en-BZ', 'en-TT', 'en-PH', 'en-ZW',
|
34 |
+
'en']
|
35 |
+
|
36 |
+
|
37 |
+
def parse_transcript_json(json_data, granularity):
|
38 |
+
assert json_data['wireMagic'] == 'pb3'
|
39 |
+
|
40 |
+
assert granularity in ('word', 'chunk')
|
41 |
+
|
42 |
+
# TODO remove bracketed words?
|
43 |
+
# (kiss smacks)
|
44 |
+
# (upbeat music)
|
45 |
+
# [text goes here]
|
46 |
+
|
47 |
+
# Some manual transcripts aren't that well formatted... but do have punctuation
|
48 |
+
# https://www.youtube.com/watch?v=LR9FtWVjk2c
|
49 |
+
|
50 |
+
parsed_transcript = []
|
51 |
+
|
52 |
+
events = json_data['events']
|
53 |
+
|
54 |
+
for event_index, event in enumerate(events):
|
55 |
+
segments = event.get('segs')
|
56 |
+
if not segments:
|
57 |
+
continue
|
58 |
+
|
59 |
+
# This value is known (when phrase appears on screen)
|
60 |
+
start_ms = event['tStartMs']
|
61 |
+
total_characters = 0
|
62 |
+
|
63 |
+
new_segments = []
|
64 |
+
for seg in segments:
|
65 |
+
# Replace \n, \t, etc. with space
|
66 |
+
text = ' '.join(seg['utf8'].split())
|
67 |
+
|
68 |
+
# Remove zero-width spaces and strip trailing and leading whitespace
|
69 |
+
text = text.replace('\u200b', '').replace('\u200c', '').replace(
|
70 |
+
'\u200d', '').replace('\ufeff', '').strip()
|
71 |
+
|
72 |
+
# Alternatively,
|
73 |
+
# text = text.encode('ascii', 'ignore').decode()
|
74 |
+
|
75 |
+
# Needed for auto-generated transcripts
|
76 |
+
text = text.replace(PROFANITY_RAW, PROFANITY_CONVERTED)
|
77 |
+
|
78 |
+
if not text:
|
79 |
+
continue
|
80 |
+
|
81 |
+
offset_ms = seg.get('tOffsetMs', 0)
|
82 |
+
|
83 |
+
new_segments.append({
|
84 |
+
'text': text,
|
85 |
+
'start': round((start_ms + offset_ms)/1000, NUM_DECIMALS)
|
86 |
+
})
|
87 |
+
|
88 |
+
total_characters += len(text)
|
89 |
+
|
90 |
+
if not new_segments:
|
91 |
+
continue
|
92 |
+
|
93 |
+
if event_index < len(events) - 1:
|
94 |
+
next_start_ms = events[event_index + 1]['tStartMs']
|
95 |
+
total_event_duration_ms = min(
|
96 |
+
event.get('dDurationMs', float('inf')), next_start_ms - start_ms)
|
97 |
+
else:
|
98 |
+
total_event_duration_ms = event.get('dDurationMs', 0)
|
99 |
+
|
100 |
+
# Ensure duration is non-negative
|
101 |
+
total_event_duration_ms = max(total_event_duration_ms, 0)
|
102 |
+
|
103 |
+
avg_seconds_per_character = (
|
104 |
+
total_event_duration_ms/total_characters)/1000
|
105 |
+
|
106 |
+
num_char_count = 0
|
107 |
+
for seg_index, seg in enumerate(new_segments):
|
108 |
+
num_char_count += len(seg['text'])
|
109 |
+
|
110 |
+
# Estimate segment end
|
111 |
+
seg_end = seg['start'] + \
|
112 |
+
(num_char_count * avg_seconds_per_character)
|
113 |
+
|
114 |
+
if seg_index < len(new_segments) - 1:
|
115 |
+
# Do not allow longer than next
|
116 |
+
seg_end = min(seg_end, new_segments[seg_index+1]['start'])
|
117 |
+
|
118 |
+
seg['end'] = round(seg_end, NUM_DECIMALS)
|
119 |
+
parsed_transcript.append(seg)
|
120 |
+
|
121 |
+
final_parsed_transcript = []
|
122 |
+
for i in range(len(parsed_transcript)):
|
123 |
+
|
124 |
+
word_level = granularity == 'word'
|
125 |
+
if word_level:
|
126 |
+
split_text = parsed_transcript[i]['text'].split()
|
127 |
+
elif granularity == 'chunk':
|
128 |
+
# Split on space after punctuation
|
129 |
+
split_text = re.split(
|
130 |
+
r'(?<=[.!?,-;])\s+', parsed_transcript[i]['text'])
|
131 |
+
if len(split_text) == 1:
|
132 |
+
split_on_whitespace = parsed_transcript[i]['text'].split()
|
133 |
+
|
134 |
+
if len(split_on_whitespace) >= 8: # Too many words
|
135 |
+
# Rather split on whitespace instead of punctuation
|
136 |
+
split_text = split_on_whitespace
|
137 |
+
else:
|
138 |
+
word_level = True
|
139 |
+
else:
|
140 |
+
raise ValueError('Unknown granularity')
|
141 |
+
|
142 |
+
segment_end = parsed_transcript[i]['end']
|
143 |
+
if i < len(parsed_transcript) - 1:
|
144 |
+
segment_end = min(segment_end, parsed_transcript[i+1]['start'])
|
145 |
+
|
146 |
+
segment_duration = segment_end - parsed_transcript[i]['start']
|
147 |
+
|
148 |
+
num_chars_in_text = sum(map(len, split_text))
|
149 |
+
|
150 |
+
num_char_count = 0
|
151 |
+
current_offset = 0
|
152 |
+
for s in split_text:
|
153 |
+
num_char_count += len(s)
|
154 |
+
|
155 |
+
next_offset = (num_char_count/num_chars_in_text) * segment_duration
|
156 |
+
|
157 |
+
word_start = round(
|
158 |
+
parsed_transcript[i]['start'] + current_offset, NUM_DECIMALS)
|
159 |
+
word_end = round(
|
160 |
+
parsed_transcript[i]['start'] + next_offset, NUM_DECIMALS)
|
161 |
+
|
162 |
+
# Make the reasonable assumption that min wps is 1.5
|
163 |
+
final_parsed_transcript.append({
|
164 |
+
'text': s,
|
165 |
+
'start': word_start,
|
166 |
+
'end': min(word_end, word_start + 1.5) if word_level else word_end
|
167 |
+
})
|
168 |
+
current_offset = next_offset
|
169 |
+
|
170 |
+
return final_parsed_transcript
|
171 |
+
|
172 |
+
|
173 |
+
def list_transcripts(video_id):
|
174 |
+
try:
|
175 |
+
return youtube_transcript_api2.YouTubeTranscriptApi.list_transcripts(video_id)
|
176 |
+
except json.decoder.JSONDecodeError:
|
177 |
+
return None
|
178 |
+
|
179 |
+
|
180 |
+
WORDS_TO_REMOVE = [
|
181 |
+
'[Music]'
|
182 |
+
'[Applause]'
|
183 |
+
'[Laughter]'
|
184 |
+
]
|
185 |
+
|
186 |
+
|
187 |
+
def get_words(video_id, transcript_type='auto', fallback='manual', filter_words_to_remove=True, granularity='word'):
|
188 |
+
"""Get parsed video transcript with caching system
|
189 |
+
returns None if not processed yet and process is False
|
190 |
+
"""
|
191 |
+
|
192 |
+
raw_transcript_json = None
|
193 |
+
try:
|
194 |
+
transcript_list = list_transcripts(video_id)
|
195 |
+
|
196 |
+
if transcript_list is not None:
|
197 |
+
if transcript_type == 'manual':
|
198 |
+
ts = transcript_list.find_manually_created_transcript(
|
199 |
+
LANGUAGE_PREFERENCE_LIST)
|
200 |
+
else:
|
201 |
+
ts = transcript_list.find_generated_transcript(
|
202 |
+
LANGUAGE_PREFERENCE_LIST)
|
203 |
+
raw_transcript = ts._http_client.get(
|
204 |
+
f'{ts._url}&fmt=json3').content
|
205 |
+
if raw_transcript:
|
206 |
+
raw_transcript_json = json.loads(raw_transcript)
|
207 |
+
|
208 |
+
except (youtube_transcript_api2.TooManyRequests, youtube_transcript_api2.YouTubeRequestFailed):
|
209 |
+
raise # Cannot recover from these errors and do not mark as empty transcript
|
210 |
+
|
211 |
+
except requests.exceptions.RequestException: # Can recover
|
212 |
+
return get_words(video_id, transcript_type, fallback, granularity)
|
213 |
+
|
214 |
+
except youtube_transcript_api2.CouldNotRetrieveTranscript: # Retrying won't solve
|
215 |
+
pass # Mark as empty transcript
|
216 |
+
|
217 |
+
except json.decoder.JSONDecodeError:
|
218 |
+
return get_words(video_id, transcript_type, fallback, granularity)
|
219 |
+
|
220 |
+
if not raw_transcript_json and fallback is not None:
|
221 |
+
return get_words(video_id, transcript_type=fallback, fallback=None, granularity=granularity)
|
222 |
+
|
223 |
+
if raw_transcript_json:
|
224 |
+
processed_transcript = parse_transcript_json(
|
225 |
+
raw_transcript_json, granularity)
|
226 |
+
if filter_words_to_remove:
|
227 |
+
processed_transcript = list(
|
228 |
+
filter(lambda x: x['text'] not in WORDS_TO_REMOVE, processed_transcript))
|
229 |
+
else:
|
230 |
+
processed_transcript = raw_transcript_json # Either None or []
|
231 |
+
|
232 |
+
return processed_transcript
|
233 |
+
|
234 |
+
|
235 |
+
def word_start(word):
|
236 |
+
return word['start']
|
237 |
+
|
238 |
+
|
239 |
+
def word_end(word):
|
240 |
+
return word.get('end', word['start'])
|
241 |
+
|
242 |
+
|
243 |
+
def extract_segment(words, start, end, map_function=None):
|
244 |
+
"""Extracts all words with time in [start, end]"""
|
245 |
+
|
246 |
+
a = max(binary_search_below(words, 0, len(words), start), 0)
|
247 |
+
b = min(binary_search_above(words, -1, len(words) - 1, end) + 1, len(words))
|
248 |
+
|
249 |
+
to_transform = map_function is not None and callable(map_function)
|
250 |
+
|
251 |
+
return [
|
252 |
+
map_function(words[i]) if to_transform else words[i] for i in range(a, b)
|
253 |
+
]
|
254 |
+
|
255 |
+
|
256 |
+
def avg(*items):
|
257 |
+
return sum(items)/len(items)
|
258 |
+
|
259 |
+
|
260 |
+
def binary_search_below(transcript, start_index, end_index, time):
|
261 |
+
if start_index >= end_index:
|
262 |
+
return end_index
|
263 |
+
|
264 |
+
middle_index = (start_index + end_index) // 2
|
265 |
+
middle = transcript[middle_index]
|
266 |
+
middle_time = avg(word_start(middle), word_end(middle))
|
267 |
+
|
268 |
+
if time <= middle_time:
|
269 |
+
return binary_search_below(transcript, start_index, middle_index, time)
|
270 |
+
else:
|
271 |
+
return binary_search_below(transcript, middle_index + 1, end_index, time)
|
272 |
+
|
273 |
+
|
274 |
+
def binary_search_above(transcript, start_index, end_index, time):
|
275 |
+
if start_index >= end_index:
|
276 |
+
return end_index
|
277 |
+
|
278 |
+
middle_index = (start_index + end_index + 1) // 2
|
279 |
+
middle = transcript[middle_index]
|
280 |
+
middle_time = avg(word_start(middle), word_end(middle))
|
281 |
+
|
282 |
+
if time >= middle_time:
|
283 |
+
return binary_search_above(transcript, middle_index, end_index, time)
|
284 |
+
else:
|
285 |
+
return binary_search_above(transcript, start_index, middle_index - 1, time)
|
286 |
|
287 |
|
288 |
class PreTrainedPipeline():
|
|
|
292 |
|
293 |
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
|
294 |
|
295 |
+
# TEMP testing
|
296 |
+
# data = [{"video_id": "pqh4LfPeCYs", "start": 835.933, "end": 927.581, "category": "sponsor"}]
|
297 |
+
words = get_words("pqh4LfPeCYs")
|
298 |
+
segment = extract_segment(words, 835.933, 927.581)
|
299 |
+
# END TEMP
|
300 |
+
|
301 |
+
|
302 |
# convert img to numpy array, resize and normalize to make the prediction
|
303 |
img = np.array(inputs)
|
304 |
|
|
|
355 |
"label": f"LABEL_{cls}",
|
356 |
"mask": mask_codes[f"mask_{cls}"],
|
357 |
"score": 1.0,
|
358 |
+
"words": segment
|
359 |
})
|
360 |
return labels
|