Joshua Lochner commited on
Commit
6e9c369
·
1 Parent(s): bfb4eff

Add custom pipeline code

Browse files
Files changed (1) hide show
  1. pipeline.py +329 -0
pipeline.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import youtube_transcript_api2
2
+ import json
3
+ import re
4
+ import requests
5
+ from transformers import (
6
+ AutoModelForSequenceClassification,
7
+ AutoTokenizer,
8
+ TextClassificationPipeline,
9
+ )
10
+ from typing import Any, Dict, List
11
+
12
+ CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']
13
+
14
+ PROFANITY_RAW = '[ __ ]' # How YouTube transcribes profanity
15
+ PROFANITY_CONVERTED = '*****' # Safer version for tokenizing
16
+
17
+ NUM_DECIMALS = 3
18
+
19
+ # https://www.fincher.org/Utilities/CountryLanguageList.shtml
20
+ # https://lingohub.com/developers/supported-locales/language-designators-with-regions
21
+ LANGUAGE_PREFERENCE_LIST = ['en-GB', 'en-US', 'en-CA', 'en-AU', 'en-NZ', 'en-ZA',
22
+ 'en-IE', 'en-IN', 'en-JM', 'en-BZ', 'en-TT', 'en-PH', 'en-ZW',
23
+ 'en']
24
+
25
+
26
+ def parse_transcript_json(json_data, granularity):
27
+ assert json_data['wireMagic'] == 'pb3'
28
+
29
+ assert granularity in ('word', 'chunk')
30
+
31
+ # TODO remove bracketed words?
32
+ # (kiss smacks)
33
+ # (upbeat music)
34
+ # [text goes here]
35
+
36
+ # Some manual transcripts aren't that well formatted... but do have punctuation
37
+ # https://www.youtube.com/watch?v=LR9FtWVjk2c
38
+
39
+ parsed_transcript = []
40
+
41
+ events = json_data['events']
42
+
43
+ for event_index, event in enumerate(events):
44
+ segments = event.get('segs')
45
+ if not segments:
46
+ continue
47
+
48
+ # This value is known (when phrase appears on screen)
49
+ start_ms = event['tStartMs']
50
+ total_characters = 0
51
+
52
+ new_segments = []
53
+ for seg in segments:
54
+ # Replace \n, \t, etc. with space
55
+ text = ' '.join(seg['utf8'].split())
56
+
57
+ # Remove zero-width spaces and strip trailing and leading whitespace
58
+ text = text.replace('\u200b', '').replace('\u200c', '').replace(
59
+ '\u200d', '').replace('\ufeff', '').strip()
60
+
61
+ # Alternatively,
62
+ # text = text.encode('ascii', 'ignore').decode()
63
+
64
+ # Needed for auto-generated transcripts
65
+ text = text.replace(PROFANITY_RAW, PROFANITY_CONVERTED)
66
+
67
+ if not text:
68
+ continue
69
+
70
+ offset_ms = seg.get('tOffsetMs', 0)
71
+
72
+ new_segments.append({
73
+ 'text': text,
74
+ 'start': round((start_ms + offset_ms)/1000, NUM_DECIMALS)
75
+ })
76
+
77
+ total_characters += len(text)
78
+
79
+ if not new_segments:
80
+ continue
81
+
82
+ if event_index < len(events) - 1:
83
+ next_start_ms = events[event_index + 1]['tStartMs']
84
+ total_event_duration_ms = min(
85
+ event.get('dDurationMs', float('inf')), next_start_ms - start_ms)
86
+ else:
87
+ total_event_duration_ms = event.get('dDurationMs', 0)
88
+
89
+ # Ensure duration is non-negative
90
+ total_event_duration_ms = max(total_event_duration_ms, 0)
91
+
92
+ avg_seconds_per_character = (
93
+ total_event_duration_ms/total_characters)/1000
94
+
95
+ num_char_count = 0
96
+ for seg_index, seg in enumerate(new_segments):
97
+ num_char_count += len(seg['text'])
98
+
99
+ # Estimate segment end
100
+ seg_end = seg['start'] + \
101
+ (num_char_count * avg_seconds_per_character)
102
+
103
+ if seg_index < len(new_segments) - 1:
104
+ # Do not allow longer than next
105
+ seg_end = min(seg_end, new_segments[seg_index+1]['start'])
106
+
107
+ seg['end'] = round(seg_end, NUM_DECIMALS)
108
+ parsed_transcript.append(seg)
109
+
110
+ final_parsed_transcript = []
111
+ for i in range(len(parsed_transcript)):
112
+
113
+ word_level = granularity == 'word'
114
+ if word_level:
115
+ split_text = parsed_transcript[i]['text'].split()
116
+ elif granularity == 'chunk':
117
+ # Split on space after punctuation
118
+ split_text = re.split(
119
+ r'(?<=[.!?,-;])\s+', parsed_transcript[i]['text'])
120
+ if len(split_text) == 1:
121
+ split_on_whitespace = parsed_transcript[i]['text'].split()
122
+
123
+ if len(split_on_whitespace) >= 8: # Too many words
124
+ # Rather split on whitespace instead of punctuation
125
+ split_text = split_on_whitespace
126
+ else:
127
+ word_level = True
128
+ else:
129
+ raise ValueError('Unknown granularity')
130
+
131
+ segment_end = parsed_transcript[i]['end']
132
+ if i < len(parsed_transcript) - 1:
133
+ segment_end = min(segment_end, parsed_transcript[i+1]['start'])
134
+
135
+ segment_duration = segment_end - parsed_transcript[i]['start']
136
+
137
+ num_chars_in_text = sum(map(len, split_text))
138
+
139
+ num_char_count = 0
140
+ current_offset = 0
141
+ for s in split_text:
142
+ num_char_count += len(s)
143
+
144
+ next_offset = (num_char_count/num_chars_in_text) * segment_duration
145
+
146
+ word_start = round(
147
+ parsed_transcript[i]['start'] + current_offset, NUM_DECIMALS)
148
+ word_end = round(
149
+ parsed_transcript[i]['start'] + next_offset, NUM_DECIMALS)
150
+
151
+ # Make the reasonable assumption that min wps is 1.5
152
+ final_parsed_transcript.append({
153
+ 'text': s,
154
+ 'start': word_start,
155
+ 'end': min(word_end, word_start + 1.5) if word_level else word_end
156
+ })
157
+ current_offset = next_offset
158
+
159
+ return final_parsed_transcript
160
+
161
+
162
+ def list_transcripts(video_id):
163
+ try:
164
+ return youtube_transcript_api2.YouTubeTranscriptApi.list_transcripts(video_id)
165
+ except json.decoder.JSONDecodeError:
166
+ return None
167
+
168
+
169
+ WORDS_TO_REMOVE = [
170
+ '[Music]'
171
+ '[Applause]'
172
+ '[Laughter]'
173
+ ]
174
+
175
+
176
+ def get_words(video_id, transcript_type='auto', fallback='manual', filter_words_to_remove=True, granularity='word'):
177
+ """Get parsed video transcript with caching system
178
+ returns None if not processed yet and process is False
179
+ """
180
+
181
+ raw_transcript_json = None
182
+ try:
183
+ transcript_list = list_transcripts(video_id)
184
+
185
+ if transcript_list is not None:
186
+ if transcript_type == 'manual':
187
+ ts = transcript_list.find_manually_created_transcript(
188
+ LANGUAGE_PREFERENCE_LIST)
189
+ else:
190
+ ts = transcript_list.find_generated_transcript(
191
+ LANGUAGE_PREFERENCE_LIST)
192
+ raw_transcript = ts._http_client.get(
193
+ f'{ts._url}&fmt=json3').content
194
+ if raw_transcript:
195
+ raw_transcript_json = json.loads(raw_transcript)
196
+
197
+ except (youtube_transcript_api2.TooManyRequests, youtube_transcript_api2.YouTubeRequestFailed):
198
+ raise # Cannot recover from these errors and do not mark as empty transcript
199
+
200
+ except requests.exceptions.RequestException: # Can recover
201
+ return get_words(video_id, transcript_type, fallback, granularity)
202
+
203
+ except youtube_transcript_api2.CouldNotRetrieveTranscript: # Retrying won't solve
204
+ pass # Mark as empty transcript
205
+
206
+ except json.decoder.JSONDecodeError:
207
+ return get_words(video_id, transcript_type, fallback, granularity)
208
+
209
+ if not raw_transcript_json and fallback is not None:
210
+ return get_words(video_id, transcript_type=fallback, fallback=None, granularity=granularity)
211
+
212
+ if raw_transcript_json:
213
+ processed_transcript = parse_transcript_json(
214
+ raw_transcript_json, granularity)
215
+ if filter_words_to_remove:
216
+ processed_transcript = list(
217
+ filter(lambda x: x['text'] not in WORDS_TO_REMOVE, processed_transcript))
218
+ else:
219
+ processed_transcript = raw_transcript_json # Either None or []
220
+
221
+ return processed_transcript
222
+
223
+
224
+ def word_start(word):
225
+ return word['start']
226
+
227
+
228
+ def word_end(word):
229
+ return word.get('end', word['start'])
230
+
231
+
232
+ def extract_segment(words, start, end, map_function=None):
233
+ """Extracts all words with time in [start, end]"""
234
+
235
+ a = max(binary_search_below(words, 0, len(words), start), 0)
236
+ b = min(binary_search_above(words, -1, len(words) - 1, end) + 1, len(words))
237
+
238
+ to_transform = map_function is not None and callable(map_function)
239
+
240
+ return [
241
+ map_function(words[i]) if to_transform else words[i] for i in range(a, b)
242
+ ]
243
+
244
+
245
+ def avg(*items):
246
+ return sum(items)/len(items)
247
+
248
+
249
+ def binary_search_below(transcript, start_index, end_index, time):
250
+ if start_index >= end_index:
251
+ return end_index
252
+
253
+ middle_index = (start_index + end_index) // 2
254
+ middle = transcript[middle_index]
255
+ middle_time = avg(word_start(middle), word_end(middle))
256
+
257
+ if time <= middle_time:
258
+ return binary_search_below(transcript, start_index, middle_index, time)
259
+ else:
260
+ return binary_search_below(transcript, middle_index + 1, end_index, time)
261
+
262
+
263
+ def binary_search_above(transcript, start_index, end_index, time):
264
+ if start_index >= end_index:
265
+ return end_index
266
+
267
+ middle_index = (start_index + end_index + 1) // 2
268
+ middle = transcript[middle_index]
269
+ middle_time = avg(word_start(middle), word_end(middle))
270
+
271
+ if time >= middle_time:
272
+ return binary_search_above(transcript, middle_index, end_index, time)
273
+ else:
274
+ return binary_search_above(transcript, start_index, middle_index - 1, time)
275
+
276
+
277
+ class SponsorBlockClassificationPipeline(TextClassificationPipeline):
278
+ def __init__(self, model, tokenizer):
279
+ super().__init__(model=model, tokenizer=tokenizer, return_all_scores=True)
280
+
281
+ def preprocess(self, video, **tokenizer_kwargs):
282
+
283
+ words = get_words(video['video_id'])
284
+ segment_words = extract_segment(words, video['start'], video['end'])
285
+ text = ' '.join(x['text'] for x in segment_words)
286
+
287
+ model_inputs = self.tokenizer(
288
+ text, return_tensors=self.framework, **tokenizer_kwargs)
289
+ return {'video': video, 'model_inputs': model_inputs}
290
+
291
+ def _forward(self, data):
292
+ model_outputs = self.model(**data['model_inputs'])
293
+ return {'video': data['video'], 'model_outputs': model_outputs}
294
+
295
+ def postprocess(self, data, function_to_apply=None, return_all_scores=False):
296
+ model_outputs = data['model_outputs']
297
+
298
+ results = super().postprocess(model_outputs, function_to_apply, return_all_scores)
299
+
300
+ for result in results:
301
+ result['label'] = CATEGORIES[result['label']]
302
+
303
+ return {**data['video'], 'result': results}
304
+
305
+
306
+ # model_id = "Xenova/sponsorblock-classifier-v2"
307
+ # model = AutoModelForSequenceClassification.from_pretrained(model_id)
308
+ # tokenizer = AutoTokenizer.from_pretrained(model_id)
309
+
310
+ # pl = SponsorBlockClassificationPipeline(model=model, tokenizer=tokenizer)
311
+ # data = [{
312
+ # 'video_id': 'pqh4LfPeCYs',
313
+ # 'start': 835.933,
314
+ # 'end': 927.581,
315
+ # 'category': 'sponsor'
316
+ # }]
317
+ # print(pl(data))
318
+
319
+
320
+ class PreTrainedPipeline():
321
+ def __init__(self, path: str):
322
+ # load the model
323
+ self.model = AutoModelForSequenceClassification.from_pretrained(path)
324
+ self.tokenizer = AutoTokenizer.from_pretrained(path)
325
+ self.pipeline = SponsorBlockClassificationPipeline(
326
+ model=self.model, tokenizer=self.tokenizer)
327
+
328
+ def __call__(self, inputs) -> List[Dict[str, Any]]:
329
+ return self.pipeline(inputs)