--- library_name: transformers.js tags: - vision - background-removal - portrait-matting license: apache-2.0 pipeline_tag: image-segmentation --- # MODNet: Trimap-Free Portrait Matting in Real Time ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/KdG3M8sltgiX8hOCNn8DT.gif) For more information, check out the official [repository](https://github.com/ZHKKKe/MODNet) and example [colab](https://colab.research.google.com/drive/1P3cWtg8fnmu9karZHYDAtmm1vj1rgA-f?usp=sharing). ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co./docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` You can then use the model for portrait matting, as follows: ```js import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers'; // Load model and processor const model = await AutoModel.from_pretrained('Xenova/modnet', { quantized: false }); const processor = await AutoProcessor.from_pretrained('Xenova/modnet'); // Load image from URL const url = 'https://images.pexels.com/photos/5965592/pexels-photo-5965592.jpeg?auto=compress&cs=tinysrgb&w=1024'; const image = await RawImage.fromURL(url); // Pre-process image const { pixel_values } = await processor(image); // Predict alpha matte const { output } = await model({ input: pixel_values }); // Save output mask const mask = await RawImage.fromTensor(output[0].mul(255).to('uint8')).resize(image.width, image.height); mask.save('mask.png'); ``` | Input image | Output mask | |--------|--------| | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/mhmDJgp5GgnbvQnUc2SVI.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/H1VBX6dS-xTpg14cl1Zxx.png) | --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co./docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).