--- base_model: jonathandinu/face-parsing library_name: transformers.js pipeline_tag: image-segmentation --- https://huggingface.co./jonathandinu/face-parsing with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co./docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Face segmentation with `Xenova/face-parsing`. ```js import { pipeline } from '@xenova/transformers'; const segmenter = await pipeline('image-segmentation', 'Xenova/face-parsing'); const url = 'https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/portrait-of-woman.jpg'; const output = await segmenter(url); console.log(output) // [ // { // score: null, // label: 'background', // mask: RawImage { ... } // }, // { // score: null, // label: 'skin.png', // mask: RawImage { ... } // }, // ... // } // ] ``` You can visualize the outputs with: ```js for (const l of output) { l.mask.save(`${l.label}.png`); } ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/530NS10pjaIlycdGWp9E9.png) --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co./docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).