File size: 3,186 Bytes
ec66d9f
 
 
 
 
 
 
 
 
 
 
9045596
ec66d9f
aee78d9
 
 
ec66d9f
 
 
 
86ab1e9
ec66d9f
10d8eff
5138e3c
ec66d9f
a47a07c
ec66d9f
 
 
 
 
 
 
 
a47a07c
86ab1e9
a47a07c
 
 
ec66d9f
4e1a5ec
 
 
 
 
ec66d9f
 
a47a07c
 
1cc505e
86ab1e9
ec66d9f
4e1a5ec
ec66d9f
86ab1e9
a47a07c
 
 
 
 
86ab1e9
 
a47a07c
 
86ab1e9
a47a07c
86ab1e9
 
 
a47a07c
86ab1e9
 
ec66d9f
 
86ab1e9
a47a07c
 
 
86ab1e9
ec66d9f
86ab1e9
ec66d9f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co./black-forest-labs/FLUX.1-dev/blob/main/LICENSE.
language:
- en
pipeline_tag: text-to-image
tags:
- Stable Diffusion
- image-generation
- Flux
- diffusers
---

![Controlnet collections for Flux](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/light/flux-controlnet-collections.png?raw=true)
[<img src="https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/light/join-our-discord-rev1.png?raw=true">](https://discord.gg/FHY2guThfy)

This repository provides a collection of ControlNet checkpoints for
[FLUX.1-dev model](https://huggingface.co./black-forest-labs/FLUX.1-dev) by Black Forest Labs

![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_result1.png?raw=true)

[See our github](https://github.com/XLabs-AI/x-flux-comfyui) for comfy ui workflows.
![Example Picture 1](https://github.com/XLabs-AI/x-flux-comfyui/blob/main/assets/image1.png?raw=true)

[See our github](https://github.com/XLabs-AI/x-flux) for train script, train configs and demo script for inference.

# Models

Our collection supports 3 models:
- Canny
- HED
- Depth (Midas)

Each ControlNet is trained on 1024x1024 resolution and works for 1024x1024 resolution.
We release **v3 versions** - better and realistic versions, which can be used directly in ComfyUI!   

Please, see our [ComfyUI custom nodes installation guide](https://github.com/XLabs-AI/x-flux-comfyui)


# Examples

See examples of our models results below.  
Also, some generation results with input images are provided in "Files and versions"

# Inference

To try our models, you have 2 options:
1. Use main.py from our [official repo](https://github.com/XLabs-AI/x-flux)
2. Use our custom nodes for ComfyUI and test it with provided workflows (check out folder /workflows)
3. Use gradio demo

See examples how to launch our models:

## Canny ControlNet (version 3)

1. Clone our [x-flux-comfyui](https://github.com/XLabs-AI/x-flux-comfyui) custom nodes
2. Launch ComfyUI
3. Try our canny_workflow.json

![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/canny_result1.png?raw=true)
![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/canny_result2.png?raw=true)


## Depth ControlNet (version 3)

1. Clone our [x-flux-comfyui](https://github.com/XLabs-AI/x-flux-comfyui) custom nodes
2. Launch ComfyUI
3. Try our depth_workflow.json

![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_result1.png?raw=true)
![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/depth_result2.png?raw=true)


## HED ControlNet (version 3)

1. Clone our [x-flux-comfyui](https://github.com/XLabs-AI/x-flux-comfyui) custom nodes
2. Launch ComfyUI
3. Try our hed_workflow.json

![Example Picture 1](https://github.com/XLabs-AI/x-flux/blob/main/assets/readme/examples/hed_result1.png?raw=true)

## License

Our weights fall under the [FLUX.1 [dev]](https://huggingface.co./black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) Non-Commercial License<br/>