File size: 10,037 Bytes
578a2e6 ab7a191 578a2e6 7dcd27c 7d9ee5b 673525f 7d9ee5b 673525f ab7a191 7dcd27c 7d9ee5b ab7a191 7d9ee5b 7dcd27c 7d9ee5b 7dcd27c e79a3da 7dcd27c e79a3da 7dcd27c ab7a191 1f7a3d3 ab7a191 dc2636c f77c6a5 dc2636c 479dc62 f77c6a5 5cdc34e f77c6a5 d869ce1 f77c6a5 dc2636c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
license: llama2
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: WizardCoder-Python-34B-V1.0
results:
- task:
type: text-generation
dataset:
type: openai_humaneval
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value: 0.732
verified: false
---
## WizardCoder: Empowering Code Large Language Models with Evol-Instruct
<p style="font-size:28px;" align="center">
π <a href="https://wizardlm.github.io/" target="_blank">Home Page</a> </p>
<p align="center">
<p align="center">
π€ <a href="https://huggingface.co./WizardLM" target="_blank">HF Repo</a> β’π± <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> β’ π¦ <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> </p>
<p align="center">
π <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β’ π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> β’ π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
</p>
<p align="center">
π Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
</p>
## News
[2024/01/04] π₯ We released **WizardCoder-33B-V1.1** trained from deepseek-coder-33b-base, the **SOTA OSS Code LLM** on [EvalPlus Leaderboard](https://evalplus.github.io/leaderboard.html), achieves **79.9 pass@1** on HumanEval, **73.2 pass@1** on HumanEval-Plus, **78.9 pass@1** on MBPP, and **66.9 pass@1** on MBPP-Plus.
[2024/01/04] π₯ **WizardCoder-33B-V1.1** outperforms **ChatGPT 3.5**, **Gemini Pro**, and **DeepSeek-Coder-33B-instruct** on HumanEval and HumanEval-Plus pass@1.
[2024/01/04] π₯ **WizardCoder-33B-V1.1** is comparable with **ChatGPT 3.5**, and surpasses **Gemini Pro** on MBPP and MBPP-Plus pass@1.
| Model | Checkpoint | Paper | HumanEval | HumanEval+ | MBPP | MBPP+ | License |
| ----- |------| ---- |------|-------| ----- | ----- |----- |
| GPT-4-Turbo (Nov 2023) | - | - | 85.4 | 81.7 | 83.0 | 70.7 |-|
| GPT-4 (May 2023) | - | - | 88.4 | 76.8 | - | - |-|
| GPT-3.5-Turbo (Nov 2023) | - | - | 72.6 | 65.9 | 81.7 | 69.4 |-|
| Gemini Pro | - | - | 63.4 | 55.5 | 72.9 | 57.9 |-|
| DeepSeek-Coder-33B-instruct | - | - | 78.7 | 72.6 | 78.7 | 66.7 |-|
| **WizardCoder-33B-V1.1** | π€ <a href="https://huggingface.co./WizardLM/WizardCoder-33B-V1.1" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 79.9 | 73.2 | 78.9 | 66.9 | <a href="https://huggingface.co./WizardLM/WizardMath-7B-V1.1/resolve/main/LICENSE" target="_blank">MSFTResearch</a> |
| WizardCoder-Python-34B-V1.0 | π€ <a href="https://huggingface.co./WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 73.2 | 64.6 | 73.2 | 59.9 | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
| WizardCoder-15B-V1.0 | π€ <a href="https://huggingface.co./WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 59.8 | 52.4 | -- | -- | <a href="https://huggingface.co./spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
| WizardCoder-Python-13B-V1.0 | π€ <a href="https://huggingface.co./WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 64.0 | -- | -- | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
| WizardCoder-Python-7B-V1.0 | π€ <a href="https://huggingface.co./WizardLM/WizardCoder-Python-7B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 55.5 | -- | -- | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
| WizardCoder-3B-V1.0 | π€ <a href="https://huggingface.co./WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 34.8 | -- | -- | -- | <a href="https://huggingface.co./spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
| WizardCoder-1B-V1.0 | π€ <a href="https://huggingface.co./WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 23.8 | -- | -- | -- | <a href="https://huggingface.co./spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
- Our **WizardMath-70B-V1.0** model slightly outperforms some closed-source LLMs on the GSM8K, including **ChatGPT 3.5**, **Claude Instant 1** and **PaLM 2 540B**.
- Our **WizardMath-70B-V1.0** model achieves **81.6 pass@1** on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math), which is **24.8** points higher than the SOTA open-source LLM, and achieves **22.7 pass@1** on the [MATH Benchmarks](https://github.com/hendrycks/math), which is **9.2** points higher than the SOTA open-source LLM.
<font size=4>
| Model | Checkpoint | Paper | GSM8k | MATH |Online Demo| License|
| ----- |------| ---- |------|-------| ----- | ----- |
| WizardMath-70B-V1.0 | π€ <a href="https://huggingface.co./WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6** | **22.7** |[Demo](http://47.103.63.15:50083/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
| WizardMath-13B-V1.0 | π€ <a href="https://huggingface.co./WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9** | **14.0** |[Demo](http://47.103.63.15:50082/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
| WizardMath-7B-V1.0 | π€ <a href="https://huggingface.co./WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> | π <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **54.9** | **10.7** | [Demo ](http://47.103.63.15:50080/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>|
</font>
- [08/09/2023] We released **WizardLM-70B-V1.0** model. Here is [Full Model Weight](https://huggingface.co./WizardLM/WizardLM-70B-V1.0).
<font size=4>
| <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>GSM8k</sup> | <sup>HumanEval</sup> | <sup>License</sup>|
| ----- |------| ---- |------|-------| ----- | ----- | ----- |
| <sup>**WizardLM-70B-V1.0**</sup> | <sup>π€ <a href="https://huggingface.co./WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup>|<sup>π**Coming Soon**</sup>| <sup>**7.78**</sup> | <sup>**92.91%**</sup> |<sup>**77.6%**</sup> | <sup> **50.6**</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.2</sup> | <sup>π€ <a href="https://huggingface.co./WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>| | <sup>7.06</sup> | <sup>89.17%</sup> |<sup>55.3%</sup> | <sup>36.6 </sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.1</sup> |<sup> π€ <a href="https://huggingface.co./WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> | | <sup>6.76</sup> |<sup>86.32%</sup> | | <sup>25.0 </sup>| <sup>Non-commercial</sup>|
| <sup>WizardLM-30B-V1.0</sup> | <sup>π€ <a href="https://huggingface.co./WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> | | <sup>7.01</sup> | | | <sup>37.8 </sup>| <sup>Non-commercial</sup> |
| <sup>WizardLM-13B-V1.0</sup> | <sup>π€ <a href="https://huggingface.co./WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> | | <sup>6.35</sup> | <sup>75.31%</sup> | | <sup> 24.0 </sup> | <sup>Non-commercial</sup>|
| <sup>WizardLM-7B-V1.0 </sup>| <sup>π€ <a href="https://huggingface.co./WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> π <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | |<sup>19.1 </sup>|<sup> Non-commercial</sup>|
</font>
## Comparing WizardCoder-Python-34B-V1.0 with Other LLMs.
π₯ The following figure shows that our **WizardCoder-Python-34B-V1.0 attains the second position in this benchmark**, surpassing GPT4 (2023/03/15, 73.2 vs. 67.0), ChatGPT-3.5 (73.2 vs. 72.5) and Claude2 (73.2 vs. 71.2).
<p align="center" width="100%">
<a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardCoder/imgs/compare_sota.png" alt="WizardCoder" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
</p>
## Prompt Format
```
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
```
## Inference Demo Script
We provide the inference demo code [here](https://github.com/nlpxucan/WizardLM/tree/main/demo).
## Citation
Please cite the repo if you use the data, method or code in this repo.
```
@article{luo2023wizardcoder,
title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin},
journal={arXiv preprint arXiv:2306.08568},
year={2023}
}
``` |