File size: 2,320 Bytes
b885f88 7b0a5f3 b885f88 7b0a5f3 b885f88 7b0a5f3 b885f88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: mit
base_model: bert-base-german-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Germeval24StageTask2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Germeval24StageTask2
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co./bert-base-german-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5740
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 0.7979
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log | 1.0 | 175 | 0.6167 | 1.0 | 1.0 | 1.0 | 0.7589 |
| No log | 2.0 | 350 | 0.5740 | 1.0 | 1.0 | 1.0 | 0.7979 |
| 0.5186 | 3.0 | 525 | 0.8370 | 1.0 | 1.0 | 1.0 | 0.7719 |
| 0.5186 | 4.0 | 700 | 0.7648 | 1.0 | 1.0 | 1.0 | 0.8153 |
| 0.5186 | 5.0 | 875 | 0.7703 | 1.0 | 1.0 | 1.0 | 0.7988 |
| 0.1581 | 6.0 | 1050 | 0.8545 | 1.0 | 1.0 | 1.0 | 0.8092 |
| 0.1581 | 7.0 | 1225 | 0.9456 | 1.0 | 1.0 | 1.0 | 0.8057 |
| 0.1581 | 8.0 | 1400 | 1.0018 | 1.0 | 1.0 | 1.0 | 0.8031 |
| 0.0573 | 9.0 | 1575 | 1.0635 | 1.0 | 1.0 | 1.0 | 0.8066 |
| 0.0573 | 10.0 | 1750 | 1.0481 | 1.0 | 1.0 | 1.0 | 0.8066 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|