File size: 4,536 Bytes
222cdac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78b9344
 
222cdac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c5114
222cdac
 
 
 
 
78b9344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222cdac
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-ravdess
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-finetuned-ravdess

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8783
- Accuracy: 0.7535

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 9    | 2.0739          | 0.1562   |
| 2.0781        | 2.0   | 18   | 2.0611          | 0.1181   |
| 2.0668        | 3.0   | 27   | 2.0308          | 0.2535   |
| 2.0429        | 4.0   | 36   | 1.9606          | 0.2604   |
| 1.974         | 5.0   | 45   | 1.8449          | 0.2847   |
| 1.8594        | 6.0   | 54   | 1.7678          | 0.2917   |
| 1.7675        | 7.0   | 63   | 1.7700          | 0.2708   |
| 1.6932        | 8.0   | 72   | 1.6049          | 0.3889   |
| 1.5656        | 9.0   | 81   | 1.5510          | 0.4444   |
| 1.4658        | 10.0  | 90   | 1.4535          | 0.4583   |
| 1.4658        | 11.0  | 99   | 1.4101          | 0.4514   |
| 1.3843        | 12.0  | 108  | 1.3687          | 0.5      |
| 1.3085        | 13.0  | 117  | 1.3333          | 0.5035   |
| 1.2264        | 14.0  | 126  | 1.3208          | 0.5208   |
| 1.1349        | 15.0  | 135  | 1.3048          | 0.5312   |
| 1.0861        | 16.0  | 144  | 1.2428          | 0.5799   |
| 0.9836        | 17.0  | 153  | 1.1886          | 0.5799   |
| 0.9273        | 18.0  | 162  | 1.1574          | 0.6146   |
| 0.8686        | 19.0  | 171  | 1.1356          | 0.6111   |
| 0.814         | 20.0  | 180  | 1.1261          | 0.6285   |
| 0.814         | 21.0  | 189  | 1.0796          | 0.6007   |
| 0.7279        | 22.0  | 198  | 1.0277          | 0.6493   |
| 0.6845        | 23.0  | 207  | 1.0408          | 0.6840   |
| 0.6283        | 24.0  | 216  | 0.9708          | 0.7153   |
| 0.5835        | 25.0  | 225  | 0.9926          | 0.6875   |
| 0.5445        | 26.0  | 234  | 1.0126          | 0.6840   |
| 0.497         | 27.0  | 243  | 0.9502          | 0.6979   |
| 0.4508        | 28.0  | 252  | 0.9432          | 0.7118   |
| 0.4331        | 29.0  | 261  | 0.9246          | 0.7014   |
| 0.4023        | 30.0  | 270  | 0.9649          | 0.6875   |
| 0.4023        | 31.0  | 279  | 0.9114          | 0.7049   |
| 0.3924        | 32.0  | 288  | 0.9460          | 0.7118   |
| 0.3797        | 33.0  | 297  | 0.9605          | 0.7118   |
| 0.3494        | 34.0  | 306  | 0.8505          | 0.7396   |
| 0.3195        | 35.0  | 315  | 0.8830          | 0.7188   |
| 0.3148        | 36.0  | 324  | 0.9352          | 0.7014   |
| 0.2856        | 37.0  | 333  | 0.8551          | 0.7292   |
| 0.2831        | 38.0  | 342  | 0.8505          | 0.7326   |
| 0.2718        | 39.0  | 351  | 0.8800          | 0.7396   |
| 0.2624        | 40.0  | 360  | 0.8991          | 0.7153   |
| 0.2624        | 41.0  | 369  | 0.8724          | 0.7465   |
| 0.2612        | 42.0  | 378  | 0.9138          | 0.7049   |
| 0.2511        | 43.0  | 387  | 0.8914          | 0.7257   |
| 0.2324        | 44.0  | 396  | 0.8783          | 0.7535   |
| 0.2228        | 45.0  | 405  | 0.9215          | 0.7188   |
| 0.2244        | 46.0  | 414  | 0.8904          | 0.7431   |
| 0.2192        | 47.0  | 423  | 0.9142          | 0.7326   |
| 0.217         | 48.0  | 432  | 0.8891          | 0.7361   |
| 0.2146        | 49.0  | 441  | 0.9009          | 0.7326   |
| 0.215         | 50.0  | 450  | 0.8994          | 0.7361   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3