Weyaxi commited on
Commit
758014f
·
verified ·
1 Parent(s): 8922da0

exl2 quants add

Browse files
Files changed (1) hide show
  1. README.md +19 -0
README.md CHANGED
@@ -293,6 +293,25 @@ gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
293
  model.generate(**gen_input)
294
  ```
295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296
  # 🎯 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
297
  Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Einstein-v4-7B)
298
 
 
293
  model.generate(**gen_input)
294
  ```
295
 
296
+ # 🔄 Quantizationed versions
297
+
298
+ Quantizationed versions of this model is available.
299
+
300
+ ## Exl2 [@bartowski](https://hf.co/bartowski):
301
+
302
+ - https://huggingface.co/bartowski/Einstein-v4-7B-exl2
303
+
304
+ You can switch up branches in the repo to use the one you want
305
+
306
+ | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
307
+ | ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
308
+ | [8_0](https://huggingface.co/bartowski/Einstein-v4-7B-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
309
+ | [6_5](https://huggingface.co/bartowski/Einstein-v4-7B-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
310
+ | [5_0](https://huggingface.co/bartowski/Einstein-v4-7B-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
311
+ | [4_25](https://huggingface.co/bartowski/Einstein-v4-7B-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. |
312
+ | [3_5](https://huggingface.co/bartowski/Einstein-v4-7B-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. |
313
+
314
+
315
  # 🎯 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
316
  Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Einstein-v4-7B)
317