Wei-Jie commited on
Commit
a5cb1ff
1 Parent(s): 1dd82e4

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/vocab-checkpoint.txt ADDED
The diff for this file is too large to render. See raw diff
 
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+
9
+ ---
10
+
11
+ # {MODEL_NAME}
12
+
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
+
15
+ <!--- Describe your model here -->
16
+
17
+ ## Usage (Sentence-Transformers)
18
+
19
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
+
21
+ ```
22
+ pip install -U sentence-transformers
23
+ ```
24
+
25
+ Then you can use the model like this:
26
+
27
+ ```python
28
+ from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
+
31
+ model = SentenceTransformer('{MODEL_NAME}')
32
+ embeddings = model.encode(sentences)
33
+ print(embeddings)
34
+ ```
35
+
36
+
37
+
38
+ ## Usage (HuggingFace Transformers)
39
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
+
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModel
43
+ import torch
44
+
45
+
46
+ #Mean Pooling - Take attention mask into account for correct averaging
47
+ def mean_pooling(model_output, attention_mask):
48
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
49
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
50
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
51
+
52
+
53
+ # Sentences we want sentence embeddings for
54
+ sentences = ['This is an example sentence', 'Each sentence is converted']
55
+
56
+ # Load model from HuggingFace Hub
57
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
59
+
60
+ # Tokenize sentences
61
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
62
+
63
+ # Compute token embeddings
64
+ with torch.no_grad():
65
+ model_output = model(**encoded_input)
66
+
67
+ # Perform pooling. In this case, mean pooling.
68
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
69
+
70
+ print("Sentence embeddings:")
71
+ print(sentence_embeddings)
72
+ ```
73
+
74
+
75
+
76
+ ## Evaluation Results
77
+
78
+ <!--- Describe how your model was evaluated -->
79
+
80
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
+
82
+
83
+ ## Training
84
+ The model was trained with the parameters:
85
+
86
+ **DataLoader**:
87
+
88
+ `torch.utils.data.dataloader.DataLoader` of length 25218 with parameters:
89
+ ```
90
+ {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
+ ```
92
+
93
+ **Loss**:
94
+
95
+ `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters:
96
+ ```
97
+ {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True}
98
+ ```
99
+
100
+ Parameters of the fit()-Method:
101
+ ```
102
+ {
103
+ "epochs": 3,
104
+ "evaluation_steps": 2000,
105
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
106
+ "max_grad_norm": 1,
107
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
108
+ "optimizer_params": {
109
+ "lr": 2e-05
110
+ },
111
+ "scheduler": "WarmupLinear",
112
+ "steps_per_epoch": null,
113
+ "warmup_steps": 100,
114
+ "weight_decay": 0.01
115
+ }
116
+ ```
117
+
118
+
119
+ ## Full Model Architecture
120
+ ```
121
+ SentenceTransformer(
122
+ (0): Transformer({'max_seq_length': 4098, 'do_lower_case': False}) with Transformer model: LongformerModel
123
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
124
+ )
125
+ ```
126
+
127
+ ## Citing & Authors
128
+
129
+ <!--- Describe where people can find more information -->
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "</s>": 21129,
3
+ "<s>": 21128
4
+ }
config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "thunlp/Lawformer",
3
+ "architectures": [
4
+ "LongformerModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "attention_window": [
8
+ 512,
9
+ 512,
10
+ 512,
11
+ 512,
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512,
19
+ 512
20
+ ],
21
+ "bos_token_id": 0,
22
+ "directionality": "bidi",
23
+ "eos_token_id": 2,
24
+ "gradient_checkpointing": false,
25
+ "hidden_act": "gelu",
26
+ "hidden_dropout_prob": 0.1,
27
+ "hidden_size": 768,
28
+ "initializer_range": 0.02,
29
+ "intermediate_size": 3072,
30
+ "layer_norm_eps": 1e-12,
31
+ "max_position_embeddings": 4098,
32
+ "model_type": "longformer",
33
+ "num_attention_heads": 12,
34
+ "num_hidden_layers": 12,
35
+ "onnx_export": false,
36
+ "output_past": true,
37
+ "pad_token_id": 1,
38
+ "pooler_fc_size": 768,
39
+ "pooler_num_attention_heads": 12,
40
+ "pooler_num_fc_layers": 3,
41
+ "pooler_size_per_head": 128,
42
+ "pooler_type": "first_token_transform",
43
+ "position_embedding_type": "absolute",
44
+ "sep_token_id": 2,
45
+ "torch_dtype": "float32",
46
+ "transformers_version": "4.30.2",
47
+ "type_vocab_size": 2,
48
+ "use_cache": true,
49
+ "vocab_size": 21128
50
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.30.2",
5
+ "pytorch": "1.13.0+cu117"
6
+ }
7
+ }
eval/.ipynb_checkpoints/similarity_evaluation_results-checkpoint.csv ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,2000,0.9996601825914542,0.8659391066635257,0.9993228054136556,0.8659391064821016,0.9991035284621262,0.8659391064801578,0.9823940517744483,0.8659391064819397
3
+ 0,2000,0.9999120285352462,0.8658398522441471,0.9993968712413026,0.865839852017393,0.9989735986424322,0.8658398520183647,0.9626031924610134,0.8658398519851616
4
+ 0,4000,0.9999832756133158,0.8658398527535336,0.9998336911210318,0.865839852091412,0.9997019611660801,0.8658398520643635,0.9633940861126989,0.8658398520263012
5
+ 0,2000,0.999811088300092,0.8655851523443783,0.9996382811598118,0.8655851520061285,0.9994690790925388,0.8655851520035379,0.9683100246053803,0.8655851520362456
6
+ 0,6000,0.9999925403805985,0.8658398537052524,0.9999148973461758,0.8658398521430795,0.999854290684556,0.8658398521121438,0.9618608411652501,0.86583985210113
7
+ 0,4000,0.9999315989948123,0.865585152946557,0.9998539791470055,0.8655851520326834,0.9997905656133788,0.8655851520399697,0.9659334803928479,0.865585152097937
8
+ 0,8000,0.9999150231756401,0.8658398568117822,0.9996404640274753,0.8658398521093904,0.9993970785107034,0.8658398520784545,0.9463734873560867,0.8658398526349737
9
+ 0,6000,0.9999689981972589,0.8655851542179487,0.9999258631351814,0.8655851520522757,0.9998946136861867,0.8655851520594001,0.9641939619000602,0.8655851521489416
10
+ 0,10000,0.9999622254499045,0.8658398601968955,0.9998304012624253,0.8658398521485863,0.9997208459736209,0.865839852125425,0.9458484594209563,0.8658398528806778
11
+ 0,-1,0.9999755613759188,0.8655851548319476,0.9999387714047834,0.8655851520594001,0.9999135491105279,0.8655851520783446,0.9637672982756955,0.8655851521832686
12
+ 0,12000,0.9955195615686828,0.8654051192392587,0.9954934603036978,0.8654199175713363,0.9950560958366287,0.8653511543842486,0.9491749119329205,0.863785124595003
13
+ 1,2000,0.9999887272030438,0.8655851581694322,0.9999646185348067,0.8655851520838499,0.9999503863459511,0.86558515209988,0.962799568982902,0.8655851522188908
14
+ 0,14000,0.9999261193921751,0.8658398571250266,0.9995264257218234,0.8658398521016158,0.999443348871843,0.865839852026949,0.9620613013134081,0.8658398521992821
15
+ 0,16000,0.9999952372727541,0.8658399999585379,0.9999473647971063,0.8658398525706728,0.9999287654498098,0.8658398522039791,0.9580012171813542,0.8658398561480408
16
+ 1,4000,0.9999944099330945,0.8655851659491783,0.9999776738812337,0.8655851521408456,0.9999683649990891,0.8655851521516943,0.9623400973342953,0.8655851522562942
17
+ 0,18000,0.9999959551343052,0.8658401190198559,0.9999634687568999,0.8658398525896228,0.9999500977158333,0.8658398522344288,0.9571987856024661,0.8658398573143664
18
+ 1,6000,0.9999968557307836,0.8655851789563338,0.9999844591473597,0.8655851521852116,0.9999772100946153,0.865585152174039,0.9616907414983263,0.8655851523309391
19
+ 0,20000,0.9999970232698957,0.8658403987891635,0.9999779256555545,0.8658398527164431,0.9999695894391217,0.86583985233744,0.9562368194167437,0.8658398583404281
20
+ 1,-1,0.9999973016099196,0.8655851871769874,0.9999867266459881,0.8655851521869926,0.9999799912490668,0.865585152196384,0.9610328551375524,0.8655851523846964
21
+ 0,22000,0.9999979205717752,0.865841027011676,0.9999866642468168,0.8658398529049729,0.9999813832884134,0.8658398524187474,0.9548887819139056,0.8658398611176786
eval/similarity_evaluation_results.csv ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,2000,0.9996601825914542,0.8659391066635257,0.9993228054136556,0.8659391064821016,0.9991035284621262,0.8659391064801578,0.9823940517744483,0.8659391064819397
3
+ 0,2000,0.9999120285352462,0.8658398522441471,0.9993968712413026,0.865839852017393,0.9989735986424322,0.8658398520183647,0.9626031924610134,0.8658398519851616
4
+ 0,4000,0.9999832756133158,0.8658398527535336,0.9998336911210318,0.865839852091412,0.9997019611660801,0.8658398520643635,0.9633940861126989,0.8658398520263012
5
+ 0,2000,0.999811088300092,0.8655851523443783,0.9996382811598118,0.8655851520061285,0.9994690790925388,0.8655851520035379,0.9683100246053803,0.8655851520362456
6
+ 0,6000,0.9999925403805985,0.8658398537052524,0.9999148973461758,0.8658398521430795,0.999854290684556,0.8658398521121438,0.9618608411652501,0.86583985210113
7
+ 0,4000,0.9999315989948123,0.865585152946557,0.9998539791470055,0.8655851520326834,0.9997905656133788,0.8655851520399697,0.9659334803928479,0.865585152097937
8
+ 0,8000,0.9999150231756401,0.8658398568117822,0.9996404640274753,0.8658398521093904,0.9993970785107034,0.8658398520784545,0.9463734873560867,0.8658398526349737
9
+ 0,6000,0.9999689981972589,0.8655851542179487,0.9999258631351814,0.8655851520522757,0.9998946136861867,0.8655851520594001,0.9641939619000602,0.8655851521489416
10
+ 0,10000,0.9999622254499045,0.8658398601968955,0.9998304012624253,0.8658398521485863,0.9997208459736209,0.865839852125425,0.9458484594209563,0.8658398528806778
11
+ 0,-1,0.9999755613759188,0.8655851548319476,0.9999387714047834,0.8655851520594001,0.9999135491105279,0.8655851520783446,0.9637672982756955,0.8655851521832686
12
+ 0,12000,0.9955195615686828,0.8654051192392587,0.9954934603036978,0.8654199175713363,0.9950560958366287,0.8653511543842486,0.9491749119329205,0.863785124595003
13
+ 1,2000,0.9999887272030438,0.8655851581694322,0.9999646185348067,0.8655851520838499,0.9999503863459511,0.86558515209988,0.962799568982902,0.8655851522188908
14
+ 0,14000,0.9999261193921751,0.8658398571250266,0.9995264257218234,0.8658398521016158,0.999443348871843,0.865839852026949,0.9620613013134081,0.8658398521992821
15
+ 0,16000,0.9999952372727541,0.8658399999585379,0.9999473647971063,0.8658398525706728,0.9999287654498098,0.8658398522039791,0.9580012171813542,0.8658398561480408
16
+ 1,4000,0.9999944099330945,0.8655851659491783,0.9999776738812337,0.8655851521408456,0.9999683649990891,0.8655851521516943,0.9623400973342953,0.8655851522562942
17
+ 0,18000,0.9999959551343052,0.8658401190198559,0.9999634687568999,0.8658398525896228,0.9999500977158333,0.8658398522344288,0.9571987856024661,0.8658398573143664
18
+ 1,6000,0.9999968557307836,0.8655851789563338,0.9999844591473597,0.8655851521852116,0.9999772100946153,0.865585152174039,0.9616907414983263,0.8655851523309391
19
+ 0,20000,0.9999970232698957,0.8658403987891635,0.9999779256555545,0.8658398527164431,0.9999695894391217,0.86583985233744,0.9562368194167437,0.8658398583404281
20
+ 1,-1,0.9999973016099196,0.8655851871769874,0.9999867266459881,0.8655851521869926,0.9999799912490668,0.865585152196384,0.9610328551375524,0.8655851523846964
21
+ 0,22000,0.9999979205717752,0.865841027011676,0.9999866642468168,0.8658398529049729,0.9999813832884134,0.8658398524187474,0.9548887819139056,0.8658398611176786
22
+ 2,2000,0.9999981697811776,0.8655852090487521,0.9999892788676258,0.8655851522094994,0.9999836004356775,0.8655851522052895,0.9610803005632921,0.8655851525126127
23
+ 0,24000,0.9999988551026139,0.8658417338427585,0.9999922794636533,0.865839853223886,0.9999888395046246,0.8658398526385369,0.953912862651064,0.8658398648949145
24
+ 0,-1,0.999999086415211,0.8658432407496844,0.9999941275111328,0.8658398535544611,0.9999914562203507,0.8658398527877086,0.9542748985697322,0.8658398691651782
25
+ 2,4000,0.9999985070599913,0.8655852250663175,0.999990132001474,0.8655851522140332,0.9999850589972685,0.8655851521986508,0.9607431970869251,0.8655851524034789
26
+ 1,2000,0.9999992653550315,0.8658450111763191,0.9999945269266056,0.865839854121994,0.99999336939403,0.8658398529096699,0.9657739789450059,0.865839864379211
27
+ 2,6000,0.9999986860705311,0.8655852430924958,0.9999908947422742,0.8655851522281203,0.9999863942073235,0.8655851522184049,0.960233148476483,0.8655851525485588
28
+ 1,4000,0.9999994509393496,0.8658471638867444,0.999996354298668,0.865839854279102,0.9999951796991428,0.8658398531837183,0.9680683029276206,0.865839866060754
29
+ 2,-1,0.9999986748133378,0.8655852458439947,0.9999909287046075,0.8655851522284441,0.9999864091617606,0.8655851522127379,0.9602262676489698,0.8655851525573026
30
+ 1,6000,0.9999994584388784,0.8658477622548026,0.9999962413807056,0.8658398537690676,0.9999951350310775,0.8658398530309833,0.9711227509806315,0.8658398625447712
31
+ 1,8000,0.9999996306598786,0.8658483066634879,0.9999965814237157,0.8658398543100378,0.999996054141161,0.8658398531718947,0.9815634633500959,0.8658398611819796
32
+ 1,10000,0.9999996404094436,0.8658505003049625,0.9999969122675313,0.8658398545149262,0.9999963940734548,0.8658398532498008,0.9857277363329162,0.8658398624007825
33
+ 1,12000,0.9999996456373966,0.8658522689077579,0.9999978306256057,0.8658398540518623,0.9999969542118295,0.865839853693105,0.987987036326611,0.8658398764294047
34
+ 1,14000,0.999999395353237,0.8658443690782625,0.999997619368495,0.8658398531646061,0.9999965485343593,0.8658398531639583,0.9897857029295171,0.8658398625978962
35
+ 1,16000,0.9999995855979104,0.865849102221066,0.9999981168045106,0.8658398538550721,0.9999971248457056,0.8658398534807661,0.9910227939213204,0.8658398651362454
36
+ 1,18000,0.9999995338221964,0.865847674771376,0.999998009584647,0.8658398535266028,0.9999969243727239,0.8658398534689424,0.9931186343584597,0.8658398613876779
37
+ 1,20000,0.9999995566925095,0.8658504503607195,0.999998180825502,0.865839853713189,0.9999971332266893,0.8658398534843293,0.9945718958827667,0.8658398636281692
38
+ 1,22000,0.9999995815458969,0.8658517420728835,0.999998198954851,0.8658398538890851,0.9999971676372954,0.8658398534626257,0.9967102395767525,0.8658398589840854
39
+ 1,24000,0.999999657661997,0.8658541613427955,0.9999983944740722,0.8658398542110759,0.9999974314657917,0.865839853604185,0.9971719625683184,0.8658398675704497
40
+ 1,-1,0.9999996632997696,0.8658547066633249,0.9999983408604033,0.8658398542820174,0.9999973475884606,0.8658398535873404,0.9976751513861493,0.8658398636048461
41
+ 2,2000,0.9999996737865771,0.8658563487440848,0.9999983958354975,0.8658398543571704,0.9999974363517502,0.8658398535784323,0.9984243853259014,0.865839862634663
42
+ 2,4000,0.9999996471807895,0.8658564955339344,0.9999983214869342,0.8658398541734995,0.9999973435797892,0.8658398535146172,0.9991505461650485,0.86583986505429
43
+ 2,6000,0.9999996637910652,0.8658576821340951,0.9999983697748557,0.8658398541783584,0.9999974226332992,0.8658398536681621,0.9995502578525585,0.8658398642833265
44
+ 2,8000,0.9999996107516289,0.8658542240458192,0.9999983443616699,0.8658398538609029,0.9999974267319115,0.8658398536103397,0.9998940077044213,0.865839861106179
45
+ 2,10000,0.9999997085080925,0.8658588046220073,0.9999985438249522,0.8658398542365047,0.9999977345179799,0.8658398536263746,0.9996845253772161,0.8658398623766493
46
+ 2,12000,0.9999996978468902,0.8658583023544759,0.9999986240906227,0.8658398540100746,0.9999978209405346,0.8658398537316532,0.9997616923924093,0.8658398607294434
47
+ 2,14000,0.9999997077435572,0.865860795031024,0.9999986272939255,0.8658398542622574,0.999997826269661,0.8658398537403994,0.9998402750895999,0.8658398628630366
48
+ 2,16000,0.9999997083942642,0.8658606301922813,0.9999986308501753,0.8658398541686405,0.9999978219493213,0.865839853657958,0.9999072951168471,0.865839861451169
49
+ 2,18000,0.9999996786666112,0.8658556506404347,0.9999986336959582,0.8658398539572734,0.9999978398383786,0.8658398536566623,0.999953642391317,0.865839860026506
50
+ 2,20000,0.9999996928728895,0.8658588979532914,0.9999986295188438,0.8658398541347894,0.999997813637049,0.865839853633987,0.9999843120207014,0.8658398603300325
51
+ 2,22000,0.999999696086666,0.865859825060944,0.9999986480177835,0.8658398539979272,0.999997838046846,0.8658398537033088,0.9999953755156065,0.8658398604837393
52
+ 2,24000,0.9999996867598336,0.865859165433554,0.9999986319042832,0.8658398541349513,0.9999978201520059,0.8658398536535851,0.9999992180221368,0.8658398597958649
53
+ 2,-1,0.9999996871299621,0.8658591937058392,0.999998635369577,0.8658398540751854,0.9999978254126141,0.8658398537088158,0.9999994852141393,0.8658398600974477
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb42d9f3f3d91ffe480ae88db2d69071be6980c77c7d3ef9607212cea1a951cb
3
+ size 505223753
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 4098,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "[MASK]",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "[PAD]",
13
+ "sep_token": "[SEP]",
14
+ "unk_token": "[UNK]"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<s>",
4
+ "clean_up_tokenization_spaces": true,
5
+ "cls_token": "[CLS]",
6
+ "do_lower_case": true,
7
+ "eos_token": "</s>",
8
+ "errors": "replace",
9
+ "mask_token": "[MASK]",
10
+ "model_max_length": 1000000000000000019884624838656,
11
+ "pad_token": "[PAD]",
12
+ "sep_token": "[SEP]",
13
+ "strip_accents": null,
14
+ "tokenize_chinese_chars": true,
15
+ "tokenizer_class": "LongformerTokenizer",
16
+ "trim_offsets": true,
17
+ "unk_token": "[UNK]"
18
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff