waterhorse1 commited on
Commit
03a376c
1 Parent(s): 026d5bd

add sft_v2

Browse files
.gitattributes CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ pytorch_model-00001-of-00002.bin filter=lfs diff=lfs merge=lfs -text
36
+ pytorch_model-00002-of-00002.bin filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ datasets:
6
+ - togethercomputer/RedPajama-Data-1T
7
+ ---
8
+
9
+ # RedPajama-INCITE-Base-3B-v1
10
+
11
+ RedPajama-INCITE-Base-3B-v1 was developed by Together and leaders from the open-source AI community including Ontocord.ai, ETH DS3Lab, AAI CERC, Université de Montréal, MILA - Québec AI Institute, Stanford Center for Research on Foundation Models (CRFM), Stanford Hazy Research research group and LAION.
12
+ The training was done on 3,072 V100 GPUs provided as part of the INCITE 2023 project on Scalable Foundation Models for Transferrable Generalist AI, awarded to MILA, LAION, and EleutherAI in fall 2022, with support from the Oak Ridge Leadership Computing Facility (OLCF) and INCITE program.
13
+
14
+ - Base Model: [RedPajama-INCITE-Base-3B-v1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-3B-v1)
15
+ - Instruction-tuned Version: [RedPajama-INCITE-Instruct-3B-v1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Instruct-3B-v1)
16
+ - Chat Version: [RedPajama-INCITE-Chat-3B-v1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Chat-3B-v1)
17
+
18
+ ## Model Details
19
+ - **Developed by**: Together Computer.
20
+ - **Model type**: Language Model
21
+ - **Language(s)**: English
22
+ - **License**: Apache 2.0
23
+ - **Model Description**: A 2.8B parameter pretrained language model.
24
+
25
+ # Quick Start
26
+
27
+ Please note that the model requires `transformers` version >= 4.25.1.
28
+
29
+ ## GPU Inference
30
+
31
+ This requires a GPU with 8GB memory.
32
+
33
+ ```python
34
+ import torch
35
+ import transformers
36
+ from transformers import AutoTokenizer, AutoModelForCausalLM
37
+
38
+ MIN_TRANSFORMERS_VERSION = '4.25.1'
39
+
40
+ # check transformers version
41
+ assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
42
+
43
+ # init
44
+ tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Base-3B-v1")
45
+ model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Base-3B-v1", torch_dtype=torch.float16)
46
+ model = model.to('cuda:0')
47
+
48
+ # infer
49
+ prompt = "Alan Turing is"
50
+ inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
51
+ input_length = inputs.input_ids.shape[1]
52
+ outputs = model.generate(
53
+ **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True,
54
+ )
55
+ token = outputs.sequences[0, input_length:]
56
+ output_str = tokenizer.decode(token)
57
+ print(output_str)
58
+ """
59
+ a name that has been synonymous with the computer age since the 1950s. The British mathematician, logician, and cryptanalyst is widely regarded as the father of modern computing. His contributions to the development of the modern computer and the theory of computation have had a profound impact on the world we live in today.
60
+ Turing’s contributions to the development of the modern computer were made in the 1940s and 1950s. He is most famous for his work on the Turing machine, a theoretical model of a computing machine that was able to perform all the mathematical operations of a computer. Turing’s work on the...
61
+ """
62
+ ```
63
+
64
+ ## GPU Inference in Int8
65
+
66
+ To run inference with int8, please ensure you have installed accelerate and bitandbytes. You can install them with the following command:
67
+
68
+ ```bash
69
+ pip install accelerate
70
+ pip install bitsandbytes
71
+ ```
72
+
73
+ Then you can run inference with int8 as follows:
74
+
75
+ ```python
76
+ import torch
77
+ import transformers
78
+ from transformers import AutoTokenizer, AutoModelForCausalLM
79
+
80
+ MIN_TRANSFORMERS_VERSION = '4.25.1'
81
+
82
+ # check transformers version
83
+ assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
84
+
85
+ # init
86
+ tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Base-3B-v1")
87
+ model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Base-3B-v1", device_map='auto', torch_dtype=torch.float16, load_in_8bit=True)
88
+
89
+ # infer
90
+ prompt = "Alan Turing is"
91
+ inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
92
+ input_length = inputs.input_ids.shape[1]
93
+ outputs = model.generate(
94
+ **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
95
+ )
96
+ token = outputs.sequences[0, input_length:]
97
+ output_str = tokenizer.decode(token)
98
+ print(output_str)
99
+ """
100
+ the man who cracked the Enigma code during World War II, and who was later convicted of homosexual acts. He was a brilliant mathematician, and a visionary who foresaw the computer age....
101
+ """
102
+ ```
103
+
104
+ ## CPU Inference
105
+
106
+ You can run inference on CPU as follows:
107
+
108
+ ```python
109
+ import torch
110
+ import transformers
111
+ from transformers import AutoTokenizer, AutoModelForCausalLM
112
+
113
+ MIN_TRANSFORMERS_VERSION = '4.25.1'
114
+
115
+ # check transformers version
116
+ assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
117
+
118
+ # init
119
+ tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Base-3B-v1")
120
+ model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Base-3B-v1", torch_dtype=torch.bfloat16)
121
+ # infer
122
+ prompt = "Alan Turing is"
123
+ inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
124
+ input_length = inputs.input_ids.shape[1]
125
+ outputs = model.generate(
126
+ **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
127
+ )
128
+ token = outputs.sequences[0, input_length:]
129
+ output_str = tokenizer.decode(token)
130
+ print(output_str)
131
+ """
132
+ a name that is synonymous with the history of computer science. As the man who invented the Turing machine, the mathematical model that defines the limits of what can be computed, Turing is credited with the invention of the modern computer. Turing was also a mathematician and logician, and his work in these fields led to the development of the field of artificial intelligence...
133
+ """
134
+ ```
135
+
136
+ Please note that since `LayerNormKernelImpl` is not implemented in fp16 for CPU, we use `bfloat16` for CPU inference.
137
+
138
+ # Uses
139
+
140
+ Excluded uses are described below.
141
+
142
+ ### Misuse, Malicious Use, and Out-of-Scope Use
143
+
144
+ It is the responsibility of the end user to ensure that the model is used in a responsible and ethical manner.
145
+
146
+ #### Out-of-Scope Use
147
+
148
+ `RedPajama-INCITE-Base-3B-v1` is a language model and may not perform well for other use cases outside of its intended scope.
149
+ For example, it may not be suitable for use in safety-critical applications or for making decisions that have a significant impact on individuals or society.
150
+ It is important to consider the limitations of the model and to only use it for its intended purpose.
151
+
152
+ #### Misuse and Malicious Use
153
+
154
+ `RedPajama-INCITE-Base-3B-v1` is designed for language modeling.
155
+ Misuse of the model, such as using it to engage in illegal or unethical activities, is strictly prohibited and goes against the principles of the project.
156
+
157
+ Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
158
+
159
+ - Generating fake news, misinformation, or propaganda
160
+ - Promoting hate speech, discrimination, or violence against individuals or groups
161
+ - Impersonating individuals or organizations without their consent
162
+ - Engaging in cyberbullying or harassment
163
+ - Defamatory content
164
+ - Spamming or scamming
165
+ - Sharing confidential or sensitive information without proper authorization
166
+ - Violating the terms of use of the model or the data used to train it
167
+ - Creating automated bots for malicious purposes such as spreading malware, phishing scams, or spamming
168
+
169
+ ## Limitations
170
+
171
+ `RedPajama-INCITE-Base-3B-v1`, like other language models, has limitations that should be taken into consideration.
172
+ For example, the model may not always provide accurate or relevant answers, particularly for questions that are complex, ambiguous, or outside of its training data.
173
+ We therefore welcome contributions from individuals and organizations, and encourage collaboration towards creating a more robust and inclusive chatbot.
174
+
175
+ ## Training
176
+
177
+ **Training Data**
178
+
179
+ Please refer to [togethercomputer/RedPajama-Data-1T](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T)
180
+
181
+ **Training Procedure**
182
+
183
+ - **Hardware:** 256 nodes of 6xV100 (IBM Power9), on the OLCF Summit cluster
184
+ - **Optimizer:** Apex FusedAdam
185
+ - **Parallelism:** Pipeline parallel 6, tensor parallel 2
186
+ - **Gradient Accumulations**: 8 (global batch size 4M tokens)
187
+ - **Num of Tokens:** 800B Tokens
188
+ - **Learning rate:** 0.00016
189
+
190
+ ## Benchmark
191
+
192
+ Please refer to our [blog post](https://together.xyz) for benchmark results.
193
+
194
+ ## Community
195
+
196
+ Join us on [Together Discord](https://discord.gg/6ZVDU8tTD4)
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "rp_3b_800b",
3
+ "architectures": [
4
+ "GPTNeoXForCausalLM"
5
+ ],
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 0,
8
+ "hidden_act": "gelu",
9
+ "hidden_size": 2560,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 10240,
12
+ "layer_norm_eps": 1e-05,
13
+ "max_position_embeddings": 2048,
14
+ "model_type": "gpt_neox",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "rotary_emb_base": 10000,
18
+ "rotary_pct": 1.0,
19
+ "tie_word_embeddings": false,
20
+ "torch_dtype": "float16",
21
+ "transformers_version": "4.28.1",
22
+ "use_cache": true,
23
+ "use_parallel_residual": false,
24
+ "vocab_size": 50432
25
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "transformers_version": "4.28.1"
6
+ }
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:586e1d8563ed1ebe509a08aeb781242f76377d16df6dfac7ce45c42be30d3c44
3
+ size 10087826517
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:959ff567e845b73a2ce5bc12177fdf5ab95513365ee8248764c8a957a42345c3
3
+ size 1150018211
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 11120237120.0
4
+ },
5
+ "weight_map": {
6
+ "embed_out.weight": "pytorch_model-00002-of-00002.bin",
7
+ "gpt_neox.embed_in.weight": "pytorch_model-00001-of-00002.bin",
8
+ "gpt_neox.final_layer_norm.bias": "pytorch_model-00002-of-00002.bin",
9
+ "gpt_neox.final_layer_norm.weight": "pytorch_model-00002-of-00002.bin",
10
+ "gpt_neox.layers.0.attention.bias": "pytorch_model-00001-of-00002.bin",
11
+ "gpt_neox.layers.0.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
12
+ "gpt_neox.layers.0.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
13
+ "gpt_neox.layers.0.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
14
+ "gpt_neox.layers.0.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
15
+ "gpt_neox.layers.0.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
16
+ "gpt_neox.layers.0.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
17
+ "gpt_neox.layers.0.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
18
+ "gpt_neox.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
19
+ "gpt_neox.layers.0.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
20
+ "gpt_neox.layers.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
21
+ "gpt_neox.layers.0.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
22
+ "gpt_neox.layers.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
23
+ "gpt_neox.layers.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
24
+ "gpt_neox.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
25
+ "gpt_neox.layers.1.attention.bias": "pytorch_model-00001-of-00002.bin",
26
+ "gpt_neox.layers.1.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
27
+ "gpt_neox.layers.1.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
28
+ "gpt_neox.layers.1.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
29
+ "gpt_neox.layers.1.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
30
+ "gpt_neox.layers.1.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
31
+ "gpt_neox.layers.1.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
32
+ "gpt_neox.layers.1.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
33
+ "gpt_neox.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
34
+ "gpt_neox.layers.1.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
35
+ "gpt_neox.layers.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
36
+ "gpt_neox.layers.1.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
37
+ "gpt_neox.layers.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
38
+ "gpt_neox.layers.1.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
39
+ "gpt_neox.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
40
+ "gpt_neox.layers.10.attention.bias": "pytorch_model-00001-of-00002.bin",
41
+ "gpt_neox.layers.10.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
42
+ "gpt_neox.layers.10.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
43
+ "gpt_neox.layers.10.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
44
+ "gpt_neox.layers.10.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
45
+ "gpt_neox.layers.10.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
46
+ "gpt_neox.layers.10.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
47
+ "gpt_neox.layers.10.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
48
+ "gpt_neox.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "gpt_neox.layers.10.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
50
+ "gpt_neox.layers.10.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
51
+ "gpt_neox.layers.10.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
52
+ "gpt_neox.layers.10.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
53
+ "gpt_neox.layers.10.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
54
+ "gpt_neox.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
55
+ "gpt_neox.layers.11.attention.bias": "pytorch_model-00001-of-00002.bin",
56
+ "gpt_neox.layers.11.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
57
+ "gpt_neox.layers.11.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
58
+ "gpt_neox.layers.11.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
59
+ "gpt_neox.layers.11.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
60
+ "gpt_neox.layers.11.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
61
+ "gpt_neox.layers.11.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
62
+ "gpt_neox.layers.11.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
63
+ "gpt_neox.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
64
+ "gpt_neox.layers.11.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
65
+ "gpt_neox.layers.11.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
66
+ "gpt_neox.layers.11.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
67
+ "gpt_neox.layers.11.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
68
+ "gpt_neox.layers.11.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
69
+ "gpt_neox.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
70
+ "gpt_neox.layers.12.attention.bias": "pytorch_model-00001-of-00002.bin",
71
+ "gpt_neox.layers.12.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
72
+ "gpt_neox.layers.12.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
73
+ "gpt_neox.layers.12.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
74
+ "gpt_neox.layers.12.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
75
+ "gpt_neox.layers.12.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
76
+ "gpt_neox.layers.12.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
77
+ "gpt_neox.layers.12.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
78
+ "gpt_neox.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
79
+ "gpt_neox.layers.12.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
80
+ "gpt_neox.layers.12.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
81
+ "gpt_neox.layers.12.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
82
+ "gpt_neox.layers.12.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
83
+ "gpt_neox.layers.12.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
84
+ "gpt_neox.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
85
+ "gpt_neox.layers.13.attention.bias": "pytorch_model-00001-of-00002.bin",
86
+ "gpt_neox.layers.13.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
87
+ "gpt_neox.layers.13.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
88
+ "gpt_neox.layers.13.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
89
+ "gpt_neox.layers.13.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
90
+ "gpt_neox.layers.13.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
91
+ "gpt_neox.layers.13.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
92
+ "gpt_neox.layers.13.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
93
+ "gpt_neox.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
94
+ "gpt_neox.layers.13.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
95
+ "gpt_neox.layers.13.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
96
+ "gpt_neox.layers.13.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
97
+ "gpt_neox.layers.13.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
98
+ "gpt_neox.layers.13.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
99
+ "gpt_neox.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
100
+ "gpt_neox.layers.14.attention.bias": "pytorch_model-00001-of-00002.bin",
101
+ "gpt_neox.layers.14.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
102
+ "gpt_neox.layers.14.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
103
+ "gpt_neox.layers.14.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
104
+ "gpt_neox.layers.14.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
105
+ "gpt_neox.layers.14.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
106
+ "gpt_neox.layers.14.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
107
+ "gpt_neox.layers.14.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
108
+ "gpt_neox.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
109
+ "gpt_neox.layers.14.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
110
+ "gpt_neox.layers.14.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
111
+ "gpt_neox.layers.14.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
112
+ "gpt_neox.layers.14.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
113
+ "gpt_neox.layers.14.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
114
+ "gpt_neox.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
115
+ "gpt_neox.layers.15.attention.bias": "pytorch_model-00001-of-00002.bin",
116
+ "gpt_neox.layers.15.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
117
+ "gpt_neox.layers.15.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
118
+ "gpt_neox.layers.15.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
119
+ "gpt_neox.layers.15.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
120
+ "gpt_neox.layers.15.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
121
+ "gpt_neox.layers.15.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
122
+ "gpt_neox.layers.15.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
123
+ "gpt_neox.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
124
+ "gpt_neox.layers.15.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
125
+ "gpt_neox.layers.15.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
126
+ "gpt_neox.layers.15.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
127
+ "gpt_neox.layers.15.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
128
+ "gpt_neox.layers.15.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
129
+ "gpt_neox.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
130
+ "gpt_neox.layers.16.attention.bias": "pytorch_model-00001-of-00002.bin",
131
+ "gpt_neox.layers.16.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
132
+ "gpt_neox.layers.16.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
133
+ "gpt_neox.layers.16.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
134
+ "gpt_neox.layers.16.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
135
+ "gpt_neox.layers.16.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
136
+ "gpt_neox.layers.16.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
137
+ "gpt_neox.layers.16.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
138
+ "gpt_neox.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "gpt_neox.layers.16.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
140
+ "gpt_neox.layers.16.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
141
+ "gpt_neox.layers.16.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
142
+ "gpt_neox.layers.16.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
143
+ "gpt_neox.layers.16.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
144
+ "gpt_neox.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
145
+ "gpt_neox.layers.17.attention.bias": "pytorch_model-00001-of-00002.bin",
146
+ "gpt_neox.layers.17.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
147
+ "gpt_neox.layers.17.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
148
+ "gpt_neox.layers.17.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
149
+ "gpt_neox.layers.17.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
150
+ "gpt_neox.layers.17.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
151
+ "gpt_neox.layers.17.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
152
+ "gpt_neox.layers.17.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
153
+ "gpt_neox.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
154
+ "gpt_neox.layers.17.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
155
+ "gpt_neox.layers.17.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
156
+ "gpt_neox.layers.17.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
157
+ "gpt_neox.layers.17.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
158
+ "gpt_neox.layers.17.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
159
+ "gpt_neox.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
160
+ "gpt_neox.layers.18.attention.bias": "pytorch_model-00001-of-00002.bin",
161
+ "gpt_neox.layers.18.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
162
+ "gpt_neox.layers.18.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
163
+ "gpt_neox.layers.18.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
164
+ "gpt_neox.layers.18.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
165
+ "gpt_neox.layers.18.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
166
+ "gpt_neox.layers.18.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
167
+ "gpt_neox.layers.18.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
168
+ "gpt_neox.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
169
+ "gpt_neox.layers.18.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
170
+ "gpt_neox.layers.18.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
171
+ "gpt_neox.layers.18.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
172
+ "gpt_neox.layers.18.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
173
+ "gpt_neox.layers.18.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
174
+ "gpt_neox.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
175
+ "gpt_neox.layers.19.attention.bias": "pytorch_model-00001-of-00002.bin",
176
+ "gpt_neox.layers.19.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
177
+ "gpt_neox.layers.19.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
178
+ "gpt_neox.layers.19.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
179
+ "gpt_neox.layers.19.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
180
+ "gpt_neox.layers.19.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
181
+ "gpt_neox.layers.19.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
182
+ "gpt_neox.layers.19.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
183
+ "gpt_neox.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
184
+ "gpt_neox.layers.19.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
185
+ "gpt_neox.layers.19.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
186
+ "gpt_neox.layers.19.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
187
+ "gpt_neox.layers.19.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
188
+ "gpt_neox.layers.19.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
189
+ "gpt_neox.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
190
+ "gpt_neox.layers.2.attention.bias": "pytorch_model-00001-of-00002.bin",
191
+ "gpt_neox.layers.2.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
192
+ "gpt_neox.layers.2.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
193
+ "gpt_neox.layers.2.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
194
+ "gpt_neox.layers.2.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
195
+ "gpt_neox.layers.2.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
196
+ "gpt_neox.layers.2.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
197
+ "gpt_neox.layers.2.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
198
+ "gpt_neox.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
199
+ "gpt_neox.layers.2.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
200
+ "gpt_neox.layers.2.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
201
+ "gpt_neox.layers.2.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
202
+ "gpt_neox.layers.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
203
+ "gpt_neox.layers.2.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
204
+ "gpt_neox.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
205
+ "gpt_neox.layers.20.attention.bias": "pytorch_model-00001-of-00002.bin",
206
+ "gpt_neox.layers.20.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
207
+ "gpt_neox.layers.20.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
208
+ "gpt_neox.layers.20.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
209
+ "gpt_neox.layers.20.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
210
+ "gpt_neox.layers.20.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
211
+ "gpt_neox.layers.20.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
212
+ "gpt_neox.layers.20.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
213
+ "gpt_neox.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
214
+ "gpt_neox.layers.20.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
215
+ "gpt_neox.layers.20.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
216
+ "gpt_neox.layers.20.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
217
+ "gpt_neox.layers.20.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
218
+ "gpt_neox.layers.20.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
219
+ "gpt_neox.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
220
+ "gpt_neox.layers.21.attention.bias": "pytorch_model-00001-of-00002.bin",
221
+ "gpt_neox.layers.21.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
222
+ "gpt_neox.layers.21.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
223
+ "gpt_neox.layers.21.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
224
+ "gpt_neox.layers.21.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
225
+ "gpt_neox.layers.21.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
226
+ "gpt_neox.layers.21.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
227
+ "gpt_neox.layers.21.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
228
+ "gpt_neox.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
229
+ "gpt_neox.layers.21.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
230
+ "gpt_neox.layers.21.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
231
+ "gpt_neox.layers.21.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
232
+ "gpt_neox.layers.21.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
233
+ "gpt_neox.layers.21.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
234
+ "gpt_neox.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
235
+ "gpt_neox.layers.22.attention.bias": "pytorch_model-00001-of-00002.bin",
236
+ "gpt_neox.layers.22.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
237
+ "gpt_neox.layers.22.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
238
+ "gpt_neox.layers.22.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
239
+ "gpt_neox.layers.22.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
240
+ "gpt_neox.layers.22.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
241
+ "gpt_neox.layers.22.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
242
+ "gpt_neox.layers.22.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
243
+ "gpt_neox.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
244
+ "gpt_neox.layers.22.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
245
+ "gpt_neox.layers.22.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
246
+ "gpt_neox.layers.22.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
247
+ "gpt_neox.layers.22.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
248
+ "gpt_neox.layers.22.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
249
+ "gpt_neox.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
250
+ "gpt_neox.layers.23.attention.bias": "pytorch_model-00001-of-00002.bin",
251
+ "gpt_neox.layers.23.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
252
+ "gpt_neox.layers.23.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
253
+ "gpt_neox.layers.23.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
254
+ "gpt_neox.layers.23.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
255
+ "gpt_neox.layers.23.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
256
+ "gpt_neox.layers.23.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
257
+ "gpt_neox.layers.23.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
258
+ "gpt_neox.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
259
+ "gpt_neox.layers.23.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
260
+ "gpt_neox.layers.23.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
261
+ "gpt_neox.layers.23.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
262
+ "gpt_neox.layers.23.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
263
+ "gpt_neox.layers.23.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
264
+ "gpt_neox.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
265
+ "gpt_neox.layers.24.attention.bias": "pytorch_model-00001-of-00002.bin",
266
+ "gpt_neox.layers.24.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
267
+ "gpt_neox.layers.24.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
268
+ "gpt_neox.layers.24.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
269
+ "gpt_neox.layers.24.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
270
+ "gpt_neox.layers.24.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
271
+ "gpt_neox.layers.24.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
272
+ "gpt_neox.layers.24.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
273
+ "gpt_neox.layers.24.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
274
+ "gpt_neox.layers.24.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
275
+ "gpt_neox.layers.24.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
276
+ "gpt_neox.layers.24.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
277
+ "gpt_neox.layers.24.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
278
+ "gpt_neox.layers.24.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
279
+ "gpt_neox.layers.24.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
280
+ "gpt_neox.layers.25.attention.bias": "pytorch_model-00001-of-00002.bin",
281
+ "gpt_neox.layers.25.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
282
+ "gpt_neox.layers.25.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
283
+ "gpt_neox.layers.25.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
284
+ "gpt_neox.layers.25.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
285
+ "gpt_neox.layers.25.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
286
+ "gpt_neox.layers.25.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
287
+ "gpt_neox.layers.25.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
288
+ "gpt_neox.layers.25.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "gpt_neox.layers.25.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
290
+ "gpt_neox.layers.25.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
291
+ "gpt_neox.layers.25.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
292
+ "gpt_neox.layers.25.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
293
+ "gpt_neox.layers.25.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
294
+ "gpt_neox.layers.25.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
295
+ "gpt_neox.layers.26.attention.bias": "pytorch_model-00001-of-00002.bin",
296
+ "gpt_neox.layers.26.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
297
+ "gpt_neox.layers.26.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
298
+ "gpt_neox.layers.26.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
299
+ "gpt_neox.layers.26.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
300
+ "gpt_neox.layers.26.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
301
+ "gpt_neox.layers.26.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
302
+ "gpt_neox.layers.26.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
303
+ "gpt_neox.layers.26.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
304
+ "gpt_neox.layers.26.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
305
+ "gpt_neox.layers.26.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
306
+ "gpt_neox.layers.26.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
307
+ "gpt_neox.layers.26.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
308
+ "gpt_neox.layers.26.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
309
+ "gpt_neox.layers.26.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
310
+ "gpt_neox.layers.27.attention.bias": "pytorch_model-00001-of-00002.bin",
311
+ "gpt_neox.layers.27.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
312
+ "gpt_neox.layers.27.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
313
+ "gpt_neox.layers.27.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
314
+ "gpt_neox.layers.27.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
315
+ "gpt_neox.layers.27.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
316
+ "gpt_neox.layers.27.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
317
+ "gpt_neox.layers.27.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
318
+ "gpt_neox.layers.27.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
319
+ "gpt_neox.layers.27.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
320
+ "gpt_neox.layers.27.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
321
+ "gpt_neox.layers.27.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
322
+ "gpt_neox.layers.27.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
323
+ "gpt_neox.layers.27.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
324
+ "gpt_neox.layers.27.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
325
+ "gpt_neox.layers.28.attention.bias": "pytorch_model-00001-of-00002.bin",
326
+ "gpt_neox.layers.28.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
327
+ "gpt_neox.layers.28.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
328
+ "gpt_neox.layers.28.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
329
+ "gpt_neox.layers.28.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
330
+ "gpt_neox.layers.28.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
331
+ "gpt_neox.layers.28.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
332
+ "gpt_neox.layers.28.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
333
+ "gpt_neox.layers.28.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
334
+ "gpt_neox.layers.28.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
335
+ "gpt_neox.layers.28.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
336
+ "gpt_neox.layers.28.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
337
+ "gpt_neox.layers.28.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
338
+ "gpt_neox.layers.28.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
339
+ "gpt_neox.layers.28.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
340
+ "gpt_neox.layers.29.attention.bias": "pytorch_model-00001-of-00002.bin",
341
+ "gpt_neox.layers.29.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
342
+ "gpt_neox.layers.29.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
343
+ "gpt_neox.layers.29.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
344
+ "gpt_neox.layers.29.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
345
+ "gpt_neox.layers.29.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
346
+ "gpt_neox.layers.29.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
347
+ "gpt_neox.layers.29.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
348
+ "gpt_neox.layers.29.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
349
+ "gpt_neox.layers.29.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
350
+ "gpt_neox.layers.29.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
351
+ "gpt_neox.layers.29.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
352
+ "gpt_neox.layers.29.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
353
+ "gpt_neox.layers.29.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
354
+ "gpt_neox.layers.29.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
355
+ "gpt_neox.layers.3.attention.bias": "pytorch_model-00001-of-00002.bin",
356
+ "gpt_neox.layers.3.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
357
+ "gpt_neox.layers.3.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
358
+ "gpt_neox.layers.3.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
359
+ "gpt_neox.layers.3.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
360
+ "gpt_neox.layers.3.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
361
+ "gpt_neox.layers.3.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
362
+ "gpt_neox.layers.3.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
363
+ "gpt_neox.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
364
+ "gpt_neox.layers.3.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
365
+ "gpt_neox.layers.3.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
366
+ "gpt_neox.layers.3.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
367
+ "gpt_neox.layers.3.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
368
+ "gpt_neox.layers.3.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
369
+ "gpt_neox.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
370
+ "gpt_neox.layers.30.attention.bias": "pytorch_model-00001-of-00002.bin",
371
+ "gpt_neox.layers.30.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
372
+ "gpt_neox.layers.30.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
373
+ "gpt_neox.layers.30.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
374
+ "gpt_neox.layers.30.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
375
+ "gpt_neox.layers.30.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
376
+ "gpt_neox.layers.30.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
377
+ "gpt_neox.layers.30.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
378
+ "gpt_neox.layers.30.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
379
+ "gpt_neox.layers.30.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
380
+ "gpt_neox.layers.30.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
381
+ "gpt_neox.layers.30.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
382
+ "gpt_neox.layers.30.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
383
+ "gpt_neox.layers.30.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
384
+ "gpt_neox.layers.30.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
385
+ "gpt_neox.layers.31.attention.bias": "pytorch_model-00002-of-00002.bin",
386
+ "gpt_neox.layers.31.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
387
+ "gpt_neox.layers.31.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
388
+ "gpt_neox.layers.31.attention.masked_bias": "pytorch_model-00002-of-00002.bin",
389
+ "gpt_neox.layers.31.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
390
+ "gpt_neox.layers.31.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
391
+ "gpt_neox.layers.31.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
392
+ "gpt_neox.layers.31.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
393
+ "gpt_neox.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
394
+ "gpt_neox.layers.31.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
395
+ "gpt_neox.layers.31.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
396
+ "gpt_neox.layers.31.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
397
+ "gpt_neox.layers.31.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
398
+ "gpt_neox.layers.31.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
399
+ "gpt_neox.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
400
+ "gpt_neox.layers.4.attention.bias": "pytorch_model-00001-of-00002.bin",
401
+ "gpt_neox.layers.4.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
402
+ "gpt_neox.layers.4.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
403
+ "gpt_neox.layers.4.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
404
+ "gpt_neox.layers.4.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
405
+ "gpt_neox.layers.4.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
406
+ "gpt_neox.layers.4.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
407
+ "gpt_neox.layers.4.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
408
+ "gpt_neox.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
409
+ "gpt_neox.layers.4.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
410
+ "gpt_neox.layers.4.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
411
+ "gpt_neox.layers.4.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
412
+ "gpt_neox.layers.4.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
413
+ "gpt_neox.layers.4.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
414
+ "gpt_neox.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
415
+ "gpt_neox.layers.5.attention.bias": "pytorch_model-00001-of-00002.bin",
416
+ "gpt_neox.layers.5.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
417
+ "gpt_neox.layers.5.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
418
+ "gpt_neox.layers.5.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
419
+ "gpt_neox.layers.5.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
420
+ "gpt_neox.layers.5.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
421
+ "gpt_neox.layers.5.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
422
+ "gpt_neox.layers.5.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
423
+ "gpt_neox.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
424
+ "gpt_neox.layers.5.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
425
+ "gpt_neox.layers.5.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
426
+ "gpt_neox.layers.5.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
427
+ "gpt_neox.layers.5.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
428
+ "gpt_neox.layers.5.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
429
+ "gpt_neox.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
430
+ "gpt_neox.layers.6.attention.bias": "pytorch_model-00001-of-00002.bin",
431
+ "gpt_neox.layers.6.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
432
+ "gpt_neox.layers.6.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
433
+ "gpt_neox.layers.6.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
434
+ "gpt_neox.layers.6.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
435
+ "gpt_neox.layers.6.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
436
+ "gpt_neox.layers.6.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
437
+ "gpt_neox.layers.6.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
438
+ "gpt_neox.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
439
+ "gpt_neox.layers.6.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
440
+ "gpt_neox.layers.6.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
441
+ "gpt_neox.layers.6.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
442
+ "gpt_neox.layers.6.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
443
+ "gpt_neox.layers.6.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
444
+ "gpt_neox.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
445
+ "gpt_neox.layers.7.attention.bias": "pytorch_model-00001-of-00002.bin",
446
+ "gpt_neox.layers.7.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
447
+ "gpt_neox.layers.7.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
448
+ "gpt_neox.layers.7.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
449
+ "gpt_neox.layers.7.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
450
+ "gpt_neox.layers.7.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
451
+ "gpt_neox.layers.7.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
452
+ "gpt_neox.layers.7.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
453
+ "gpt_neox.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
454
+ "gpt_neox.layers.7.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
455
+ "gpt_neox.layers.7.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
456
+ "gpt_neox.layers.7.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
457
+ "gpt_neox.layers.7.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
458
+ "gpt_neox.layers.7.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
459
+ "gpt_neox.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
460
+ "gpt_neox.layers.8.attention.bias": "pytorch_model-00001-of-00002.bin",
461
+ "gpt_neox.layers.8.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
462
+ "gpt_neox.layers.8.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
463
+ "gpt_neox.layers.8.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
464
+ "gpt_neox.layers.8.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
465
+ "gpt_neox.layers.8.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
466
+ "gpt_neox.layers.8.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
467
+ "gpt_neox.layers.8.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
468
+ "gpt_neox.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
469
+ "gpt_neox.layers.8.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
470
+ "gpt_neox.layers.8.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
471
+ "gpt_neox.layers.8.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
472
+ "gpt_neox.layers.8.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
473
+ "gpt_neox.layers.8.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
474
+ "gpt_neox.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
475
+ "gpt_neox.layers.9.attention.bias": "pytorch_model-00001-of-00002.bin",
476
+ "gpt_neox.layers.9.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
477
+ "gpt_neox.layers.9.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
478
+ "gpt_neox.layers.9.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
479
+ "gpt_neox.layers.9.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
480
+ "gpt_neox.layers.9.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
481
+ "gpt_neox.layers.9.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
482
+ "gpt_neox.layers.9.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
483
+ "gpt_neox.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
484
+ "gpt_neox.layers.9.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
485
+ "gpt_neox.layers.9.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
486
+ "gpt_neox.layers.9.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
487
+ "gpt_neox.layers.9.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
488
+ "gpt_neox.layers.9.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
489
+ "gpt_neox.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin"
490
+ }
491
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "unk_token": "<|endoftext|>"
5
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<|endoftext|>",
4
+ "clean_up_tokenization_spaces": true,
5
+ "eos_token": "<|endoftext|>",
6
+ "model_max_length": 2048,
7
+ "tokenizer_class": "GPTNeoXTokenizer",
8
+ "unk_token": "<|endoftext|>"
9
+ }