--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: checkpoints_29_9_microsoft_deberta_V1 results: [] --- # checkpoints_29_9_microsoft_deberta_V1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6667 - Map@3: 0.8692 - Accuracy: 0.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 1.6098 | 0.05 | 100 | 1.6090 | 0.5250 | 0.38 | | 1.6092 | 0.11 | 200 | 1.6040 | 0.7408 | 0.63 | | 1.1308 | 0.16 | 300 | 1.1807 | 0.7475 | 0.63 | | 1.0343 | 0.21 | 400 | 0.9997 | 0.8108 | 0.705 | | 0.9673 | 0.27 | 500 | 0.9104 | 0.8042 | 0.69 | | 0.9579 | 0.32 | 600 | 0.8178 | 0.8542 | 0.775 | | 0.8286 | 0.37 | 700 | 0.7612 | 0.8592 | 0.785 | | 0.8198 | 0.43 | 800 | 0.7236 | 0.8600 | 0.795 | | 0.8379 | 0.48 | 900 | 0.7237 | 0.8583 | 0.79 | | 0.8646 | 0.53 | 1000 | 0.7052 | 0.8583 | 0.785 | | 0.8876 | 0.59 | 1100 | 0.6899 | 0.8692 | 0.8 | | 0.8598 | 0.64 | 1200 | 0.6897 | 0.8683 | 0.8 | | 0.8218 | 0.69 | 1300 | 0.6655 | 0.8725 | 0.805 | | 0.8695 | 0.75 | 1400 | 0.6742 | 0.8692 | 0.8 | | 0.8136 | 0.8 | 1500 | 0.6739 | 0.8692 | 0.8 | | 0.7843 | 0.85 | 1600 | 0.6644 | 0.8725 | 0.81 | | 0.8477 | 0.91 | 1700 | 0.6655 | 0.8717 | 0.805 | | 0.7881 | 0.96 | 1800 | 0.6667 | 0.8692 | 0.8 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.9.0 - Tokenizers 0.13.3