Model save
Browse files- README.md +81 -0
- pytorch_model.bin +1 -1
- training_args.bin +1 -1
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/deberta-v3-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: checkpoints_29_9_microsoft_deberta_V1
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# checkpoints_29_9_microsoft_deberta_V1
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6667
|
21 |
+
- Map@3: 0.8692
|
22 |
+
- Accuracy: 0.8
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 2e-06
|
42 |
+
- train_batch_size: 2
|
43 |
+
- eval_batch_size: 4
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 16
|
46 |
+
- total_train_batch_size: 32
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: cosine
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 1
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
|
56 |
+
| 1.6098 | 0.05 | 100 | 1.6090 | 0.5250 | 0.38 |
|
57 |
+
| 1.6092 | 0.11 | 200 | 1.6040 | 0.7408 | 0.63 |
|
58 |
+
| 1.1308 | 0.16 | 300 | 1.1807 | 0.7475 | 0.63 |
|
59 |
+
| 1.0343 | 0.21 | 400 | 0.9997 | 0.8108 | 0.705 |
|
60 |
+
| 0.9673 | 0.27 | 500 | 0.9104 | 0.8042 | 0.69 |
|
61 |
+
| 0.9579 | 0.32 | 600 | 0.8178 | 0.8542 | 0.775 |
|
62 |
+
| 0.8286 | 0.37 | 700 | 0.7612 | 0.8592 | 0.785 |
|
63 |
+
| 0.8198 | 0.43 | 800 | 0.7236 | 0.8600 | 0.795 |
|
64 |
+
| 0.8379 | 0.48 | 900 | 0.7237 | 0.8583 | 0.79 |
|
65 |
+
| 0.8646 | 0.53 | 1000 | 0.7052 | 0.8583 | 0.785 |
|
66 |
+
| 0.8876 | 0.59 | 1100 | 0.6899 | 0.8692 | 0.8 |
|
67 |
+
| 0.8598 | 0.64 | 1200 | 0.6897 | 0.8683 | 0.8 |
|
68 |
+
| 0.8218 | 0.69 | 1300 | 0.6655 | 0.8725 | 0.805 |
|
69 |
+
| 0.8695 | 0.75 | 1400 | 0.6742 | 0.8692 | 0.8 |
|
70 |
+
| 0.8136 | 0.8 | 1500 | 0.6739 | 0.8692 | 0.8 |
|
71 |
+
| 0.7843 | 0.85 | 1600 | 0.6644 | 0.8725 | 0.81 |
|
72 |
+
| 0.8477 | 0.91 | 1700 | 0.6655 | 0.8717 | 0.805 |
|
73 |
+
| 0.7881 | 0.96 | 1800 | 0.6667 | 0.8692 | 0.8 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.32.1
|
79 |
+
- Pytorch 2.0.0
|
80 |
+
- Datasets 2.9.0
|
81 |
+
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1740387701
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bbc26a84b8e07277caa90b9522a79600c2ef8e24221dbba7a6f7b3e6beeb1ab
|
3 |
size 1740387701
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4091
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35be4b80af4c19e50aeb562870d06a969d7f4f33e9bd7298366b2c523697e45a
|
3 |
size 4091
|