--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: checkpoints_28_9_microsoft_deberta_V5 results: [] --- # checkpoints_28_9_microsoft_deberta_V5 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6408 - Map@3: 0.8542 - Accuracy: 0.76 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 1.6111 | 0.05 | 25 | 1.6092 | 0.5092 | 0.325 | | 1.6139 | 0.11 | 50 | 1.6085 | 0.7 | 0.575 | | 1.6096 | 0.16 | 75 | 1.5867 | 0.7583 | 0.645 | | 1.2905 | 0.21 | 100 | 1.1496 | 0.7767 | 0.66 | | 1.0263 | 0.27 | 125 | 0.8628 | 0.8067 | 0.705 | | 0.9475 | 0.32 | 150 | 0.7252 | 0.8458 | 0.75 | | 0.841 | 0.37 | 175 | 0.7018 | 0.8492 | 0.76 | | 0.8301 | 0.43 | 200 | 0.7137 | 0.8492 | 0.755 | | 0.823 | 0.48 | 225 | 0.6633 | 0.8525 | 0.755 | | 0.8263 | 0.53 | 250 | 0.6751 | 0.8608 | 0.765 | | 0.7962 | 0.59 | 275 | 0.6704 | 0.8542 | 0.755 | | 0.8013 | 0.64 | 300 | 0.6583 | 0.8525 | 0.755 | | 0.789 | 0.69 | 325 | 0.6497 | 0.8533 | 0.76 | | 0.7979 | 0.75 | 350 | 0.6512 | 0.8525 | 0.755 | | 0.7751 | 0.8 | 375 | 0.6445 | 0.8583 | 0.765 | | 0.7993 | 0.85 | 400 | 0.6424 | 0.8558 | 0.765 | | 0.7685 | 0.91 | 425 | 0.6408 | 0.8542 | 0.76 | | 0.7807 | 0.96 | 450 | 0.6408 | 0.8542 | 0.76 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.9.0 - Tokenizers 0.13.3