VuongQuoc commited on
Commit
8789767
·
1 Parent(s): ec0d806

Model save

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-v3-large
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: checkpoints_28_9_microsoft_deberta_V5
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # checkpoints_28_9_microsoft_deberta_V5
17
+
18
+ This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6408
21
+ - Map@3: 0.8542
22
+ - Accuracy: 0.76
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 1e-05
42
+ - train_batch_size: 4
43
+ - eval_batch_size: 4
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 32
46
+ - total_train_batch_size: 128
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: cosine
49
+ - lr_scheduler_warmup_ratio: 0.2
50
+ - num_epochs: 1
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
56
+ | 1.6111 | 0.05 | 25 | 1.6092 | 0.5092 | 0.325 |
57
+ | 1.6139 | 0.11 | 50 | 1.6085 | 0.7 | 0.575 |
58
+ | 1.6096 | 0.16 | 75 | 1.5867 | 0.7583 | 0.645 |
59
+ | 1.2905 | 0.21 | 100 | 1.1496 | 0.7767 | 0.66 |
60
+ | 1.0263 | 0.27 | 125 | 0.8628 | 0.8067 | 0.705 |
61
+ | 0.9475 | 0.32 | 150 | 0.7252 | 0.8458 | 0.75 |
62
+ | 0.841 | 0.37 | 175 | 0.7018 | 0.8492 | 0.76 |
63
+ | 0.8301 | 0.43 | 200 | 0.7137 | 0.8492 | 0.755 |
64
+ | 0.823 | 0.48 | 225 | 0.6633 | 0.8525 | 0.755 |
65
+ | 0.8263 | 0.53 | 250 | 0.6751 | 0.8608 | 0.765 |
66
+ | 0.7962 | 0.59 | 275 | 0.6704 | 0.8542 | 0.755 |
67
+ | 0.8013 | 0.64 | 300 | 0.6583 | 0.8525 | 0.755 |
68
+ | 0.789 | 0.69 | 325 | 0.6497 | 0.8533 | 0.76 |
69
+ | 0.7979 | 0.75 | 350 | 0.6512 | 0.8525 | 0.755 |
70
+ | 0.7751 | 0.8 | 375 | 0.6445 | 0.8583 | 0.765 |
71
+ | 0.7993 | 0.85 | 400 | 0.6424 | 0.8558 | 0.765 |
72
+ | 0.7685 | 0.91 | 425 | 0.6408 | 0.8542 | 0.76 |
73
+ | 0.7807 | 0.96 | 450 | 0.6408 | 0.8542 | 0.76 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.32.1
79
+ - Pytorch 2.0.0
80
+ - Datasets 2.9.0
81
+ - Tokenizers 0.13.3