--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: checkpoints_28_9_microsoft_deberta_V2 results: [] --- # checkpoints_28_9_microsoft_deberta_V2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5675 - Map@3: 0.8842 - Accuracy: 0.815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 1.0011 | 0.11 | 100 | 0.8842 | 0.8258 | 0.74 | | 0.8398 | 0.21 | 200 | 0.6978 | 0.8667 | 0.79 | | 0.8414 | 0.32 | 300 | 0.6337 | 0.8625 | 0.795 | | 0.7461 | 0.43 | 400 | 0.6609 | 0.8600 | 0.775 | | 0.7131 | 0.53 | 500 | 0.6329 | 0.8758 | 0.805 | | 0.6891 | 0.64 | 600 | 0.6157 | 0.8892 | 0.83 | | 0.6969 | 0.75 | 700 | 0.5917 | 0.8808 | 0.805 | | 0.6775 | 0.85 | 800 | 0.5698 | 0.8817 | 0.81 | | 0.6534 | 0.96 | 900 | 0.5675 | 0.8842 | 0.815 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.9.0 - Tokenizers 0.13.3