--- base_model: VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384 tags: - generated_from_trainer metrics: - accuracy model-index: - name: checkpoints_10_1_microsoft_deberta_V1.1_384 results: [] --- # checkpoints_10_1_microsoft_deberta_V1.1_384 This model is a fine-tuned version of [VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384](https://huggingface.co./VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7675 - Map@3: 0.8483 - Accuracy: 0.755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 1.5583 | 0.05 | 100 | 1.4269 | 0.7675 | 0.65 | | 1.1541 | 0.11 | 200 | 1.0863 | 0.765 | 0.66 | | 1.0126 | 0.16 | 300 | 0.9547 | 0.8133 | 0.72 | | 0.9608 | 0.21 | 400 | 0.8926 | 0.8275 | 0.74 | | 0.9224 | 0.27 | 500 | 0.8429 | 0.8400 | 0.76 | | 0.8834 | 0.32 | 600 | 0.8297 | 0.8342 | 0.745 | | 0.8585 | 0.37 | 700 | 0.7904 | 0.8483 | 0.76 | | 0.8491 | 0.43 | 800 | 0.7726 | 0.8542 | 0.765 | | 0.878 | 0.48 | 900 | 0.7693 | 0.8517 | 0.755 | | 0.8529 | 0.53 | 1000 | 0.7703 | 0.8450 | 0.75 | | 0.8485 | 0.59 | 1100 | 0.7682 | 0.8483 | 0.755 | | 0.8353 | 0.64 | 1200 | 0.7675 | 0.8483 | 0.755 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.9.0 - Tokenizers 0.13.3