--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: 1_microsoft_deberta_V1.1 results: [] --- # 1_microsoft_deberta_V1.1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7138 - Map@3: 0.8492 - Accuracy: 0.775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 1.6141 | 0.03 | 50 | 1.6087 | 0.6242 | 0.51 | | 1.336 | 0.05 | 100 | 1.1398 | 0.7550 | 0.645 | | 0.9441 | 0.08 | 150 | 0.8809 | 0.8150 | 0.7 | | 0.9279 | 0.11 | 200 | 0.7528 | 0.8383 | 0.73 | | 0.8639 | 0.13 | 250 | 0.7259 | 0.8525 | 0.76 | | 0.8255 | 0.16 | 300 | 0.7363 | 0.8592 | 0.785 | | 0.8411 | 0.19 | 350 | 0.7052 | 0.8483 | 0.76 | | 0.856 | 0.21 | 400 | 0.7097 | 0.8408 | 0.745 | | 0.7753 | 0.24 | 450 | 0.6860 | 0.8575 | 0.775 | | 0.7941 | 0.27 | 500 | 0.7146 | 0.8525 | 0.765 | | 0.8062 | 0.29 | 550 | 0.7138 | 0.8492 | 0.775 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.9.0 - Tokenizers 0.13.3