--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: 1_microsoft_deberta_V1.0 results: [] --- # 1_microsoft_deberta_V1.0 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0849 - Map@3: 0.7725 - Accuracy: 0.665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 25 - total_train_batch_size: 50 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 1.6098 | 0.01 | 10 | 1.6090 | 0.6108 | 0.475 | | 1.6057 | 0.02 | 20 | 1.6027 | 0.7375 | 0.625 | | 1.5615 | 0.03 | 30 | 1.4516 | 0.7458 | 0.64 | | 1.2061 | 0.03 | 40 | 1.2130 | 0.7292 | 0.595 | | 1.1028 | 0.04 | 50 | 1.0947 | 0.765 | 0.65 | | 1.0682 | 0.05 | 60 | 1.0849 | 0.7725 | 0.665 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.9.0 - Tokenizers 0.13.3