VuongQuoc commited on
Commit
f3ed916
1 Parent(s): cad9b72

Model save

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-v3-large
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: 1_microsoft_deberta_V1.0
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # 1_microsoft_deberta_V1.0
17
+
18
+ This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.1558
21
+ - Map@3: 0.7650
22
+ - Accuracy: 0.655
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 2
43
+ - eval_batch_size: 4
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 25
46
+ - total_train_batch_size: 50
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: cosine
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - training_steps: 60
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
56
+ | 1.6051 | 0.01 | 10 | 1.6088 | 0.6350 | 0.515 |
57
+ | 1.6082 | 0.02 | 20 | 1.5999 | 0.7192 | 0.595 |
58
+ | 1.5893 | 0.03 | 30 | 1.5422 | 0.7417 | 0.63 |
59
+ | 1.4097 | 0.03 | 40 | 1.2963 | 0.7400 | 0.62 |
60
+ | 1.2099 | 0.04 | 50 | 1.1738 | 0.7608 | 0.645 |
61
+ | 1.1201 | 0.05 | 60 | 1.1558 | 0.7650 | 0.655 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.32.1
67
+ - Pytorch 2.0.0
68
+ - Datasets 2.9.0
69
+ - Tokenizers 0.13.3