|
import jax |
|
print(jax.local_device_count()) |
|
import jax.numpy as jnp |
|
|
|
import flax |
|
import flax.linen as nn |
|
from flax.core.frozen_dict import FrozenDict, unfreeze |
|
from flax.training.common_utils import get_metrics,onehot,shard,shard_prng_key |
|
|
|
from transformers import GPTNeoConfig |
|
from transformers.models.gpt_neo.modeling_flax_gpt_neo import FlaxGPTNeoPreTrainedModel |
|
from transformers import GPT2Tokenizer |
|
|
|
from datasets import load_dataset |
|
import pandas as pd |
|
|
|
num_choices=4 |
|
dataset = load_dataset("cosmos_qa") |
|
|
|
def preprocess(example): |
|
example['context&question']=example['context']+example['question'] |
|
example['first_sentence']=[example['context&question']]*num_choices |
|
example['second_sentence']=[example[f'answer{i}'] for i in range(num_choices)] |
|
return example |
|
|
|
test_dataset=dataset['test'].map(preprocess) |
|
|
|
len_test_dataset=6000 |
|
|
|
test_dataset=test_dataset.select(range(len_test_dataset)) |
|
|
|
tokenizer=GPT2Tokenizer.from_pretrained('EleutherAI/gpt-neo-1.3B',pad_token='<|endoftext|>') |
|
|
|
remove_col=test_dataset.column_names |
|
|
|
def tokenize(examples): |
|
tokenized_examples=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,max_length=256,return_tensors='jax') |
|
return tokenized_examples |
|
|
|
test_dataset=test_dataset.map(tokenize) |
|
|
|
test_dataset=test_dataset.remove_columns(remove_col) |
|
list1=[] |
|
|
|
def glue_test_data_loader(rng,dataset,batch_size): |
|
steps_per_epoch=len_test_dataset//batch_size |
|
perms=jax.random.permutation(rng,len_test_dataset) |
|
perms=perms[:steps_per_epoch*batch_size] |
|
perms=perms.reshape((steps_per_epoch,batch_size)) |
|
for perm in perms: |
|
list1.append(perm) |
|
batch=dataset[perm] |
|
|
|
batch={k:jnp.array(v) for k,v in batch.items()} |
|
|
|
yield batch |
|
|
|
seed=0 |
|
rng=jax.random.PRNGKey(seed) |
|
dropout_rngs=jax.random.split(rng,jax.local_device_count()) |
|
|
|
input_id=jnp.array(test_dataset['input_ids']) |
|
att_mask=jnp.array(test_dataset['attention_mask']) |
|
|
|
total_batch_size=16 |
|
|
|
from model_file import FlaxGPTNeoForMultipleChoice |
|
|
|
model = FlaxGPTNeoForMultipleChoice.from_pretrained('Vivek/gptneo_cosmos',input_shape=(1,num_choices,1)) |
|
|
|
restored_output=[] |
|
rng, input_rng = jax.random.split(rng) |
|
for idx,batch in enumerate(glue_test_data_loader(input_rng, test_dataset, total_batch_size)): |
|
outputs=model(batch['input_ids'],batch['attention_mask']) |
|
final_output=jnp.argmax(outputs,axis=-1) |
|
restored_output.append(final_output) |
|
|
|
finall=pd.DataFrame({'predictions':restored_output,'permutation':list1}) |
|
finall.to_csv('./final_cosmos_predictions.csv') |
|
|