File size: 2,675 Bytes
e736bff
 
7cfd378
 
e736bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44d4316
e736bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
license: mit
language:
- ml
---
# MalayaLLM: Gemma-2 [മലയാളം/Malayalam]

<img src="https://cdn-uploads.huggingface.co/production/uploads/64e65800e44b2668a56f9731/MztEunp8nG4Qy-LSds0SZ.png" alt="Baby MalayaLLM" width="300" height="200">

# Introducing the Developer:
Discover the mind behind this model and stay updated on their contributions to the field
https://www.linkedin.com/in/vishnu-prasad-j/

# Model description
The MalayaLLM models have been improved and customized expanding upon the groundwork laid by the original Gemma-2 model.

- **Model type:** A 9B Gemma-2 finetuned model on Malayalam tokens.
- **Language(s):** Malayalam and English
- **Datasets:**  [CohereForAI/aya_dataset](https://huggingface.co./datasets/CohereForAI/aya_dataset)
- **Source Model:** [MalayaLLM_Gemma_2_9B_Base_V1.0](https://huggingface.co./VishnuPJ/MalayaLLM_Gemma_2_9B_Base_V1.0)
- **Instruct Model:** [MalayaLLM_Gemma_2_9B_Instruct_V1.0](https://huggingface.co./VishnuPJ/MalayaLLM_Gemma_2_9B_Instruct_V1.0)
- **Training Precision:** `float16`
- **Github Repo:** [MalayaLLM-Gemma2-9B](https://github.com/VishnuPJ/MalayaLLM-Gemma2-9B)

# Old Model
Gemma trained model is here :[MalayaLLM: Gemma-7B](https://huggingface.co./collections/VishnuPJ/malayallm-malayalam-gemma-7b-66851df5e809bed18c2abd25)

## How to run GGUF

  - #### llama.cpp Web Server
    - The web server is a lightweight HTTP server that can be used to serve local models and easily connect them to existing clients.
  - #### Building llama.cpp
    - To build `llama.cpp` locally, follow the instructions provided in the [build documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md).
  - #### Running llama.cpp as a Web Server
    - Once you have built `llama.cpp`, you can run it as a web server. Below is an example of how to start the server:
        ```sh
        llama-server.exe -m gemma_2_9b_instruction.Q4_K_M.gguf -ngl 42 -c 128 -n 100
        ```
  - #### Accessing the Web UI
    - After starting the server, you can access the basic web UI via your browser at the following address:
      [http://localhost:8080](http://localhost:8080)
<img src="https://cdn-uploads.huggingface.co/production/uploads/64e65800e44b2668a56f9731/te7d5xjMrtk6RDMEAxmCy.png" alt="Baby MalayaLLM" width="600" height="1000">
  

## Made Using UNSLOTH

Thanks to [Unsloth](https://github.com/unslothai/unsloth), the process of fine-tuning large language models (LLMs) has become much easier and more efficient.
<img src="https://cdn-uploads.huggingface.co/production/uploads/64e65800e44b2668a56f9731/WPt_FKUWDdc6--l_Qnb-G.png" alt="Unsloth" width="300" height="200">

# 🌟Happy coding💻🌟