--- library_name: transformers language: - mr license: apache-2.0 base_model: Viraj008/whisper-small-mr_v3 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 - fsicoli/common_voice_19_0 - ylacombe/google-marathi - google/fleurs metrics: - wer model-index: - name: Whisper Small MR v4 - Viraj Patil results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: mr split: None args: 'config: mr, split: test' metrics: - name: Wer type: wer value: 34.49746734204212 --- # Whisper Small MR v4 - Viraj Patil This model is a fine-tuned version of [Viraj008/whisper-small-mr_v3](https://huggingface.co./Viraj008/whisper-small-mr_v3) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2132 - Wer: 34.4975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1241 | 0.5355 | 1000 | 0.2290 | 40.3892 | | 0.0681 | 1.0710 | 2000 | 0.2150 | 36.1037 | | 0.0576 | 1.6064 | 3000 | 0.2081 | 35.2573 | | 0.0399 | 2.1419 | 4000 | 0.2132 | 34.4975 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0