VinayHajare commited on
Commit
a3287ec
·
1 Parent(s): 4ba4c44

Updated the usage code

Browse files
Files changed (1) hide show
  1. README.md +24 -3
README.md CHANGED
@@ -26,12 +26,33 @@ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
29
- TODO: Add your code
30
 
31
 
32
  ```python
33
- from stable_baselines3 import ...
 
34
  from huggingface_sb3 import load_from_hub
 
 
 
 
35
 
36
- ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  ```
 
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
 
29
 
30
 
31
  ```python
32
+ # Usage code
33
+ import gymnasium as gym
34
  from huggingface_sb3 import load_from_hub
35
+ from stable_baselines3 import PPO
36
+ from stable_baselines3.common.vec_env import DummyVecEnv
37
+ from stable_baselines3.common.evaluation import evaluate_policy
38
+ from stable_baselines3.common.monitor import Monitor
39
 
40
+ repo_id = "VinayHajare/ppo-LunarLander-v2"
41
+ filename = "ppo-LunarLander-v2.zip"
42
+ eval_env = DummyVecEnv([lambda: Monitor(gym.make("LunarLander-v2", render_mode="rgb_array"))])
43
+
44
+ checkpoint = load_from_hub(repo_id, filename)
45
+ model = PPO.load(checkpoint,env=eval_env,print_system_info=True)
46
+
47
+ #eval_env = DummyVecEnv([lambda: Monitor(gym.make("LunarLander-v2", render_mode="rgb_array"))])
48
+ mean_reward, std_reward = evaluate_policy(model,eval_env, n_eval_episodes=10, deterministic=True)
49
+ print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
50
+
51
+ # Enjoy trained agent
52
+ vec_env = model.get_env()
53
+ obs = vec_env.reset()
54
+ for _ in range(1000):
55
+ action, _states = model.predict(obs, deterministic=True)
56
+ obs, rewards, dones, info = vec_env.step(action)
57
+ vec_env.render("human")
58
  ```