--- language: - it license: mit tags: - generated_from_trainer datasets: - facebook/voxpopuli pipeline_tag: text-to-speech base_model: microsoft/speecht5_tts model-index: - name: SpeechT5-it results: - task: type: text-to-speech name: Text to Speech dataset: name: VOXPOPULI type: facebook/voxpopuli config: it split: validation args: it metrics: - type: loss value: 0.46 name: Loss --- # SpeechT5-it This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co./microsoft/speecht5_tts) on the VOXPOPULI dataset. It achieves the following results on the evaluation set: - Loss: 0.4600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.5641 | 1.0 | 712 | 0.5090 | | 0.5394 | 2.0 | 1424 | 0.4915 | | 0.5277 | 3.0 | 2136 | 0.4819 | | 0.5136 | 4.0 | 2848 | 0.4798 | | 0.5109 | 5.0 | 3560 | 0.4733 | | 0.5078 | 6.0 | 4272 | 0.4731 | | 0.5033 | 7.0 | 4984 | 0.4692 | | 0.5021 | 8.0 | 5696 | 0.4691 | | 0.4984 | 9.0 | 6408 | 0.4670 | | 0.488 | 10.0 | 7120 | 0.4641 | | 0.491 | 11.0 | 7832 | 0.4641 | | 0.4918 | 12.0 | 8544 | 0.4647 | | 0.4933 | 13.0 | 9256 | 0.4622 | | 0.499 | 14.0 | 9968 | 0.4619 | | 0.4906 | 15.0 | 10680 | 0.4608 | | 0.4884 | 16.0 | 11392 | 0.4622 | | 0.4847 | 17.0 | 12104 | 0.4616 | | 0.4916 | 18.0 | 12816 | 0.4592 | | 0.4845 | 19.0 | 13528 | 0.4600 | | 0.4788 | 20.0 | 14240 | 0.4594 | | 0.4746 | 21.0 | 14952 | 0.4607 | | 0.4875 | 22.0 | 15664 | 0.4615 | | 0.4831 | 23.0 | 16376 | 0.4597 | | 0.4798 | 24.0 | 17088 | 0.4595 | | 0.4727 | 25.0 | 17800 | 0.4592 | | 0.4736 | 26.0 | 18512 | 0.4598 | | 0.4746 | 27.0 | 19224 | 0.4608 | | 0.4728 | 28.0 | 19936 | 0.4589 | | 0.4771 | 29.0 | 20648 | 0.4593 | | 0.4743 | 30.0 | 21360 | 0.4588 | | 0.4785 | 31.0 | 22072 | 0.4601 | | 0.4757 | 32.0 | 22784 | 0.4597 | | 0.4731 | 33.0 | 23496 | 0.4598 | | 0.4746 | 34.0 | 24208 | 0.4593 | | 0.4715 | 35.0 | 24920 | 0.4599 | | 0.4769 | 36.0 | 25632 | 0.4622 | | 0.4778 | 37.0 | 26344 | 0.4605 | | 0.4798 | 38.0 | 27056 | 0.4594 | | 0.4694 | 39.0 | 27768 | 0.4607 | | 0.468 | 40.0 | 28480 | 0.4600 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3