File size: 6,696 Bytes
6fd7d49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import librosa

import torchaudio
import torch

from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
)

from speechtokenizer import SpeechTokenizer
from WavTokenizer.decoder.pretrained import WavTokenizer
from audiotools import AudioSignal


def resample(audio_data: torch.Tensor, sample_rate: int):
    print("Inout sample rate:", sample_rate)
    if sample_rate == 24000:
      audio_data24k = audio_data
      audio_data16k = torch.tensor(
          librosa.resample(
              audio_data.cpu().detach().numpy(), orig_sr=sample_rate, target_sr=16000
          )
      )
    elif sample_rate == 16000:
      audio_data16k = audio_data
      audio_data24k = torch.tensor(
          librosa.resample(
              audio_data.cpu().detach().numpy(), orig_sr=sample_rate, target_sr=24000
          )
      )
    else:
      print("Resampling everything")
      audio_data16k = torch.tensor(
          librosa.resample(
              audio_data.cpu().detach().numpy(), orig_sr=sample_rate, target_sr=16000
          )
      )
      audio_data24k = torch.tensor(
          librosa.resample(
              audio_data.cpu().detach().numpy(), orig_sr=sample_rate, target_sr=24000
          )
      )

    return (audio_data16k.view(1, -1).float().to(device), 
           audio_data24k.view(1, -1).float().to(device))


def decode_tts(tokens, quantizer, n_codebooks, n_original_tokens, start_audio_token_id, end_audio_token_id):
    # find start and end indices of audio tokens
    start = torch.nonzero(tokens == start_audio_token_id)
    end = torch.nonzero(tokens == end_audio_token_id)

    start = start[0, -1] + 1 if len(start) else 0
    end = end[0, -1] if len(end) else tokens.shape[-1]

    # subtract length of original vocabulary -> tokens in range [0, 1024)
    audio_tokens = tokens[start:end] % n_original_tokens
    reminder = audio_tokens.shape[-1] % n_codebooks

    if reminder:
        # pad if last frame is incomplete
        pad_tokens = torch.zeros(n_codebooks - reminder, device="cuda")
        audio_tokens = torch.cat([audio_tokens, pad_tokens], dim=0)

    transposed = audio_tokens.view(-1, n_codebooks).t()
    codes = transposed.view(n_codebooks, 1, -1).to(device)

    audio = quantizer.decode(codes).squeeze(0)

    del tokens
    del audio_tokens
    torch.cuda.empty_cache()

    return AudioSignal(audio.detach().cpu().numpy(), quantizer.sample_rate)


def infer_text_to_audio(text, model, tokenizer, quantizer, max_seq_length=1024, top_k=20):
    text_tokenized = tokenizer(text, return_tensors="pt")
    text_input_tokens = text_tokenized["input_ids"].to(device)

    soa = tokenizer(start_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
    eoa = tokenizer(end_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)

    text_tokens = torch.cat([text_input_tokens, soa], dim=1)
    attention_mask = torch.ones(text_tokens.size(), device=device)

    output_audio_tokens = model.generate(
        text_tokens,
        attention_mask=attention_mask,
        max_new_tokens=max_seq_length,
        top_k=top_k,
        do_sample=True,
        temperature=0.1,
        repetition_penalty=1.1,
        length_penalty=1.2,
        no_repeat_ngram_size=3,
    )

    audio_signal = decode_tts(output_audio_tokens[0], quantizer, 3, len(tokenizer), soa, eoa)

    return audio_signal


def infer_audio_to_text(audio_path, model, tokenizer, quantizer_speech, quantizer_wav, max_seq_length=1024, top_k=20):
    audio_data, sample_rate = torchaudio.load(audio_path)

    audio_16k, audio_24k = resample(audio_data, sample_rate)
    bandwidth_id = torch.tensor([0])

    codes_semantics = quantizer_speech.encode(audio_16k.reshape(1, 1, -1))
    raw_semantic_tokens = codes_semantics + len(tokenizer)
    raw_semantic_tokens = raw_semantic_tokens[:1].view(1, -1)

    _, codes = quantizer_wav.encode_infer(audio_24k, bandwidth_id=bandwidth_id)
    raw_acoustic_tokens = codes + len(tokenizer) + 1024
    raw_acoustic_tokens = raw_acoustic_tokens.view(1, -1)

    audio_tokens = torch.cat([raw_semantic_tokens, raw_acoustic_tokens], dim=1)

    soa = tokenizer(start_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
    eoa = tokenizer(end_audio_token, return_tensors="pt")["input_ids"][:, -1:].to(device)
    audio_tokens = torch.cat([soa, audio_tokens, eoa], dim=1)
    
    # text_tokens = tokenizer("is said with", return_tensors="pt")["input_ids"].to(device)
    tokens = torch.cat([audio_tokens], dim=1)

    attention_mask = torch.ones(tokens.size(), device=device)

    output_text_tokens = model.generate(
        tokens,
        attention_mask=attention_mask,
        max_new_tokens=max_seq_length,
        do_sample=True,
        temperature=0.1,
        top_p=0.9,
        top_k=top_k,
    )

    output_text_tokens = output_text_tokens.cpu()[0]
    output_text_tokens = output_text_tokens[output_text_tokens < tokenizer(start_audio_token)["input_ids"][-1]]
    decoded_text = tokenizer.decode(output_text_tokens, skip_special_tokens=True)

    return decoded_text


device = "cuda"

n_codebooks_tts = 3
n_codebooks_asr = 1

start_audio_token = "<|start_of_audio|>"
end_audio_token = "<|end_of_audio|>"
end_sequence_token = "<|end_of_text|>"

base_model = "Vikhrmodels/salt-asr_speech_1_wav_1_tts_speech_3_text-10k"


if __name__ == "__main__":
    tokenizer = AutoTokenizer.from_pretrained(base_model, cache_dir=".")
    model = AutoModelForCausalLM.from_pretrained(
        base_model,
        cache_dir=".",
        torch_dtype=torch.bfloat16,
        attn_implementation="sdpa",
        device_map={"": 0}
    )

    quantizer_speech = SpeechTokenizer.load_from_checkpoint("speechtokenizer/config.json",
                                                            "speechtokenizer/SpeechTokenizer.pt")
    quantizer_speech = quantizer_speech.eval().to(device)
    codebook_size = quantizer_speech.quantizer.bins

    quantizer_wav = WavTokenizer.from_pretrained0802("wavtokenizer/config.yaml",
                                                     "wavtokenizer/WavTokenizer_small_600_24k_4096.ckpt")
    quantizer_wav = quantizer_wav.to(device)

    text = ("Say 'COUNT NUMBERS FROM ONE TO TEN' with a male speaker delivers a very monotone and "
            "low-pitched speech with a moderate speed in a setting with almost no noise, "
            "creating a clear and quiet recording.")

    audio_signal = infer_text_to_audio(text, model, tokenizer, quantizer_speech, top_k=60)
    audio_signal.write("output.wav")

    audio_path = "./input.wav"
    generated_text = infer_audio_to_text(audio_path, model, tokenizer, quantizer_speech, quantizer_wav, top_k=10)
    print(generated_text)