Vedant3907 commited on
Commit
3cc1e26
·
verified ·
1 Parent(s): 66a22bd

Updated Readme.md

Browse files
Files changed (1) hide show
  1. README.md +70 -164
README.md CHANGED
@@ -4,199 +4,105 @@ tags:
4
  - unsloth
5
  - trl
6
  - sft
 
 
 
 
 
 
 
7
  ---
8
 
9
- # Model Card for Model ID
10
 
11
- <!-- Provide a quick summary of what the model is/does. -->
12
-
13
-
14
-
15
- ## Model Details
16
 
17
  ### Model Description
18
 
19
- <!-- Provide a longer summary of what this model is. -->
20
-
21
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
22
-
23
- - **Developed by:** [More Information Needed]
24
- - **Funded by [optional]:** [More Information Needed]
25
- - **Shared by [optional]:** [More Information Needed]
26
- - **Model type:** [More Information Needed]
27
- - **Language(s) (NLP):** [More Information Needed]
28
- - **License:** [More Information Needed]
29
- - **Finetuned from model [optional]:** [More Information Needed]
30
 
31
- ### Model Sources [optional]
 
 
 
 
 
32
 
33
- <!-- Provide the basic links for the model. -->
34
-
35
- - **Repository:** [More Information Needed]
36
- - **Paper [optional]:** [More Information Needed]
37
- - **Demo [optional]:** [More Information Needed]
38
-
39
- ## Uses
40
-
41
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
42
 
43
  ### Direct Use
44
 
45
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
46
-
47
- [More Information Needed]
48
 
49
- ### Downstream Use [optional]
 
 
 
50
 
51
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
52
 
53
- [More Information Needed]
 
 
54
 
55
- ### Out-of-Scope Use
 
 
56
 
57
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
58
 
59
- [More Information Needed]
 
 
 
 
 
60
 
61
- ## Bias, Risks, and Limitations
62
-
63
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
64
-
65
- [More Information Needed]
66
-
67
- ### Recommendations
68
-
69
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
70
 
71
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
72
 
73
- ## How to Get Started with the Model
74
 
75
- Use the code below to get started with the model.
76
 
77
- [More Information Needed]
 
78
 
79
  ## Training Details
80
 
81
- ### Training Data
82
-
83
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
84
-
85
- [More Information Needed]
86
 
87
  ### Training Procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
90
-
91
- #### Preprocessing [optional]
92
-
93
- [More Information Needed]
94
-
95
-
96
- #### Training Hyperparameters
97
-
98
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
99
-
100
- #### Speeds, Sizes, Times [optional]
101
-
102
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
103
-
104
- [More Information Needed]
105
-
106
- ## Evaluation
107
-
108
- <!-- This section describes the evaluation protocols and provides the results. -->
109
-
110
- ### Testing Data, Factors & Metrics
111
-
112
- #### Testing Data
113
-
114
- <!-- This should link to a Dataset Card if possible. -->
115
-
116
- [More Information Needed]
117
-
118
- #### Factors
119
-
120
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
121
-
122
- [More Information Needed]
123
-
124
- #### Metrics
125
-
126
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
127
-
128
- [More Information Needed]
129
-
130
- ### Results
131
-
132
- [More Information Needed]
133
-
134
- #### Summary
135
-
136
-
137
-
138
- ## Model Examination [optional]
139
-
140
- <!-- Relevant interpretability work for the model goes here -->
141
-
142
- [More Information Needed]
143
-
144
- ## Environmental Impact
145
-
146
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
147
-
148
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
149
-
150
- - **Hardware Type:** [More Information Needed]
151
- - **Hours used:** [More Information Needed]
152
- - **Cloud Provider:** [More Information Needed]
153
- - **Compute Region:** [More Information Needed]
154
- - **Carbon Emitted:** [More Information Needed]
155
-
156
- ## Technical Specifications [optional]
157
-
158
- ### Model Architecture and Objective
159
-
160
- [More Information Needed]
161
-
162
- ### Compute Infrastructure
163
-
164
- [More Information Needed]
165
 
166
  #### Hardware
167
 
168
- [More Information Needed]
169
-
170
- #### Software
171
-
172
- [More Information Needed]
173
-
174
- ## Citation [optional]
175
-
176
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
177
-
178
- **BibTeX:**
179
-
180
- [More Information Needed]
181
-
182
- **APA:**
183
-
184
- [More Information Needed]
185
-
186
- ## Glossary [optional]
187
-
188
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
189
-
190
- [More Information Needed]
191
-
192
- ## More Information [optional]
193
-
194
- [More Information Needed]
195
-
196
- ## Model Card Authors [optional]
197
-
198
- [More Information Needed]
199
-
200
- ## Model Card Contact
201
 
202
- [More Information Needed]
 
4
  - unsloth
5
  - trl
6
  - sft
7
+ datasets:
8
+ - Clinton/Text-to-sql-v1
9
+ language:
10
+ - en
11
+ base_model:
12
+ - unsloth/Meta-Llama-3.1-8B
13
+ pipeline_tag: text-generation
14
  ---
15
 
16
+ # Model Card for `Vedant3907/Text-to-Sql-llama3.1-8B`
17
 
 
 
 
 
 
18
 
19
  ### Model Description
20
 
21
+ This model is a fine-tuned version of **`unsloth/Meta-Llama-3.1-8B`** optimized for **Text-to-SQL generation** tasks. The fine-tuning was done using the **Unsloth library** with LoRA (Low-Rank Adaptation) for parameter-efficient fine-tuning. The training data consists of the first 5000 rows of the **Clinton/Text-to-sql-v1** dataset.
 
 
 
 
 
 
 
 
 
 
22
 
23
+ - **Developed by**: Vedant Rajpurohit
24
+ - **Model type**: Causal Language Model
25
+ - **Language(s)**: English
26
+ - **Fine-tuned from model**: `unsloth/Meta-Llama-3.1-8B`
27
+ - **Model size**: 8.03B parameters
28
+ - **Precision**: BF16
29
 
 
 
 
 
 
 
 
 
 
30
 
31
  ### Direct Use
32
 
33
+ ```python
34
+ from transformers import AutoModelForCausalLM, AutoTokenizer
35
+ import torch
36
 
37
+ # Load the model and tokenizer from the Hugging Face Hub
38
+ model_name = "Vedant3907/Text-to-Sql-llama3.1-8B"
39
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
40
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
41
 
42
+ model.eval()
43
 
44
+ # Define your test prompt
45
+ sql_prompt = """Below are SQL table schemas paired with instruction that describes a task.
46
+ Using valid SQLite, write a response that appropriately completes the request for the provided tables.
47
 
48
+ ### Instruction: What is the 2007 result when the 2010 result was 2r, at the US Open?
49
+ ### Input: CREATE TABLE table_name_91 ( tournament VARCHAR )
50
+ ### Response:"""
51
 
52
+ # Tokenize input
53
+ inputs = tokenizer(sql_prompt, return_tensors="pt").to("cuda")
54
 
55
+ # Generate SQL query
56
+ outputs = model.generate(
57
+ **inputs,
58
+ max_new_tokens=100,
59
+ do_sample=True, # Use sampling for more diverse outputs
60
+ )
61
 
62
+ # Decode and print the generated output
63
+ generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
64
+ print("Generated SQL Query:")
65
+ print(generated_sql)
 
 
 
 
 
66
 
67
+ #SELECT 2007 FROM table_name_91 WHERE 2010 = "2r" AND tournament = "us open"
68
 
69
+ ```
70
 
71
+ ## Bias, Risks, and Limitations
72
 
73
+ - The model was only trained on first 5000 rows for 250 steps.
74
+ - The model may generate incorrect or ambiguous SQL queries for instructions that are unclear or outside the training distribution.
75
 
76
  ## Training Details
77
 
78
+ ### Dataset
79
+ - **Dataset Name**: `Clinton/Text-to-sql-v1`
80
+ - **Rows Used**: First 5000 rows of the dataset.
 
 
81
 
82
  ### Training Procedure
83
+ The model was fine-tuned using the **Unsloth library** with LoRA adapters, enabling efficient training. Below are the hyperparameters used:
84
+
85
+ ```python
86
+ TrainingArguments(
87
+ per_device_train_batch_size = 2,
88
+ gradient_accumulation_steps = 4,
89
+ warmup_steps = 10, # 4% of 250 steps
90
+ max_steps = 250,
91
+ learning_rate = 1e-4,
92
+ fp16 = not is_bfloat16_supported(),
93
+ bf16 = is_bfloat16_supported(),
94
+ logging_steps = 10,
95
+ optim = "adamw_8bit",
96
+ weight_decay = 0.01,
97
+ lr_scheduler_type = "cosine",
98
+ seed = 3407,
99
+ output_dir = "outputs",
100
+ report_to = "none"
101
+ )
102
+ ```
103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  #### Hardware
106
 
107
+ - Trained on google colab with its T4 GPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108