Vedant3907
commited on
Updated Readme.md
Browse files
README.md
CHANGED
@@ -4,199 +4,105 @@ tags:
|
|
4 |
- unsloth
|
5 |
- trl
|
6 |
- sft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
-
# Model Card for
|
10 |
|
11 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
## Model Details
|
16 |
|
17 |
### Model Description
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
22 |
-
|
23 |
-
- **Developed by:** [More Information Needed]
|
24 |
-
- **Funded by [optional]:** [More Information Needed]
|
25 |
-
- **Shared by [optional]:** [More Information Needed]
|
26 |
-
- **Model type:** [More Information Needed]
|
27 |
-
- **Language(s) (NLP):** [More Information Needed]
|
28 |
-
- **License:** [More Information Needed]
|
29 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
<!-- Provide the basic links for the model. -->
|
34 |
-
|
35 |
-
- **Repository:** [More Information Needed]
|
36 |
-
- **Paper [optional]:** [More Information Needed]
|
37 |
-
- **Demo [optional]:** [More Information Needed]
|
38 |
-
|
39 |
-
## Uses
|
40 |
-
|
41 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
42 |
|
43 |
### Direct Use
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
|
53 |
-
|
|
|
|
|
54 |
|
55 |
-
###
|
|
|
|
|
56 |
|
57 |
-
|
|
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
[More Information Needed]
|
66 |
-
|
67 |
-
### Recommendations
|
68 |
-
|
69 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
70 |
|
71 |
-
|
72 |
|
73 |
-
|
74 |
|
75 |
-
|
76 |
|
77 |
-
|
|
|
78 |
|
79 |
## Training Details
|
80 |
|
81 |
-
###
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
[More Information Needed]
|
86 |
|
87 |
### Training Procedure
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
90 |
-
|
91 |
-
#### Preprocessing [optional]
|
92 |
-
|
93 |
-
[More Information Needed]
|
94 |
-
|
95 |
-
|
96 |
-
#### Training Hyperparameters
|
97 |
-
|
98 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
99 |
-
|
100 |
-
#### Speeds, Sizes, Times [optional]
|
101 |
-
|
102 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
103 |
-
|
104 |
-
[More Information Needed]
|
105 |
-
|
106 |
-
## Evaluation
|
107 |
-
|
108 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
109 |
-
|
110 |
-
### Testing Data, Factors & Metrics
|
111 |
-
|
112 |
-
#### Testing Data
|
113 |
-
|
114 |
-
<!-- This should link to a Dataset Card if possible. -->
|
115 |
-
|
116 |
-
[More Information Needed]
|
117 |
-
|
118 |
-
#### Factors
|
119 |
-
|
120 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
121 |
-
|
122 |
-
[More Information Needed]
|
123 |
-
|
124 |
-
#### Metrics
|
125 |
-
|
126 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
-
|
130 |
-
### Results
|
131 |
-
|
132 |
-
[More Information Needed]
|
133 |
-
|
134 |
-
#### Summary
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
## Model Examination [optional]
|
139 |
-
|
140 |
-
<!-- Relevant interpretability work for the model goes here -->
|
141 |
-
|
142 |
-
[More Information Needed]
|
143 |
-
|
144 |
-
## Environmental Impact
|
145 |
-
|
146 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
147 |
-
|
148 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
149 |
-
|
150 |
-
- **Hardware Type:** [More Information Needed]
|
151 |
-
- **Hours used:** [More Information Needed]
|
152 |
-
- **Cloud Provider:** [More Information Needed]
|
153 |
-
- **Compute Region:** [More Information Needed]
|
154 |
-
- **Carbon Emitted:** [More Information Needed]
|
155 |
-
|
156 |
-
## Technical Specifications [optional]
|
157 |
-
|
158 |
-
### Model Architecture and Objective
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
-
|
162 |
-
### Compute Infrastructure
|
163 |
-
|
164 |
-
[More Information Needed]
|
165 |
|
166 |
#### Hardware
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
#### Software
|
171 |
-
|
172 |
-
[More Information Needed]
|
173 |
-
|
174 |
-
## Citation [optional]
|
175 |
-
|
176 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
177 |
-
|
178 |
-
**BibTeX:**
|
179 |
-
|
180 |
-
[More Information Needed]
|
181 |
-
|
182 |
-
**APA:**
|
183 |
-
|
184 |
-
[More Information Needed]
|
185 |
-
|
186 |
-
## Glossary [optional]
|
187 |
-
|
188 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
## More Information [optional]
|
193 |
-
|
194 |
-
[More Information Needed]
|
195 |
-
|
196 |
-
## Model Card Authors [optional]
|
197 |
-
|
198 |
-
[More Information Needed]
|
199 |
-
|
200 |
-
## Model Card Contact
|
201 |
|
202 |
-
[More Information Needed]
|
|
|
4 |
- unsloth
|
5 |
- trl
|
6 |
- sft
|
7 |
+
datasets:
|
8 |
+
- Clinton/Text-to-sql-v1
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
base_model:
|
12 |
+
- unsloth/Meta-Llama-3.1-8B
|
13 |
+
pipeline_tag: text-generation
|
14 |
---
|
15 |
|
16 |
+
# Model Card for `Vedant3907/Text-to-Sql-llama3.1-8B`
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
### Model Description
|
20 |
|
21 |
+
This model is a fine-tuned version of **`unsloth/Meta-Llama-3.1-8B`** optimized for **Text-to-SQL generation** tasks. The fine-tuning was done using the **Unsloth library** with LoRA (Low-Rank Adaptation) for parameter-efficient fine-tuning. The training data consists of the first 5000 rows of the **Clinton/Text-to-sql-v1** dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
- **Developed by**: Vedant Rajpurohit
|
24 |
+
- **Model type**: Causal Language Model
|
25 |
+
- **Language(s)**: English
|
26 |
+
- **Fine-tuned from model**: `unsloth/Meta-Llama-3.1-8B`
|
27 |
+
- **Model size**: 8.03B parameters
|
28 |
+
- **Precision**: BF16
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
### Direct Use
|
32 |
|
33 |
+
```python
|
34 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
35 |
+
import torch
|
36 |
|
37 |
+
# Load the model and tokenizer from the Hugging Face Hub
|
38 |
+
model_name = "Vedant3907/Text-to-Sql-llama3.1-8B"
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
40 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
|
41 |
|
42 |
+
model.eval()
|
43 |
|
44 |
+
# Define your test prompt
|
45 |
+
sql_prompt = """Below are SQL table schemas paired with instruction that describes a task.
|
46 |
+
Using valid SQLite, write a response that appropriately completes the request for the provided tables.
|
47 |
|
48 |
+
### Instruction: What is the 2007 result when the 2010 result was 2r, at the US Open?
|
49 |
+
### Input: CREATE TABLE table_name_91 ( tournament VARCHAR )
|
50 |
+
### Response:"""
|
51 |
|
52 |
+
# Tokenize input
|
53 |
+
inputs = tokenizer(sql_prompt, return_tensors="pt").to("cuda")
|
54 |
|
55 |
+
# Generate SQL query
|
56 |
+
outputs = model.generate(
|
57 |
+
**inputs,
|
58 |
+
max_new_tokens=100,
|
59 |
+
do_sample=True, # Use sampling for more diverse outputs
|
60 |
+
)
|
61 |
|
62 |
+
# Decode and print the generated output
|
63 |
+
generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
64 |
+
print("Generated SQL Query:")
|
65 |
+
print(generated_sql)
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
#SELECT 2007 FROM table_name_91 WHERE 2010 = "2r" AND tournament = "us open"
|
68 |
|
69 |
+
```
|
70 |
|
71 |
+
## Bias, Risks, and Limitations
|
72 |
|
73 |
+
- The model was only trained on first 5000 rows for 250 steps.
|
74 |
+
- The model may generate incorrect or ambiguous SQL queries for instructions that are unclear or outside the training distribution.
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
+
### Dataset
|
79 |
+
- **Dataset Name**: `Clinton/Text-to-sql-v1`
|
80 |
+
- **Rows Used**: First 5000 rows of the dataset.
|
|
|
|
|
81 |
|
82 |
### Training Procedure
|
83 |
+
The model was fine-tuned using the **Unsloth library** with LoRA adapters, enabling efficient training. Below are the hyperparameters used:
|
84 |
+
|
85 |
+
```python
|
86 |
+
TrainingArguments(
|
87 |
+
per_device_train_batch_size = 2,
|
88 |
+
gradient_accumulation_steps = 4,
|
89 |
+
warmup_steps = 10, # 4% of 250 steps
|
90 |
+
max_steps = 250,
|
91 |
+
learning_rate = 1e-4,
|
92 |
+
fp16 = not is_bfloat16_supported(),
|
93 |
+
bf16 = is_bfloat16_supported(),
|
94 |
+
logging_steps = 10,
|
95 |
+
optim = "adamw_8bit",
|
96 |
+
weight_decay = 0.01,
|
97 |
+
lr_scheduler_type = "cosine",
|
98 |
+
seed = 3407,
|
99 |
+
output_dir = "outputs",
|
100 |
+
report_to = "none"
|
101 |
+
)
|
102 |
+
```
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
#### Hardware
|
106 |
|
107 |
+
- Trained on google colab with its T4 GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
|