File size: 41,313 Bytes
d22347e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "code",
      "source": [
        "!pip install datasets"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "c-WoJQeGyPlG",
        "outputId": "9ff1fe05-13fc-4046-c45e-f7396b1f2250"
      },
      "execution_count": 2,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting datasets\n",
            "  Downloading datasets-2.19.1-py3-none-any.whl (542 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m542.0/542.0 kB\u001b[0m \u001b[31m10.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.14.0)\n",
            "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.25.2)\n",
            "Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (14.0.2)\n",
            "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n",
            "Collecting dill<0.3.9,>=0.3.0 (from datasets)\n",
            "  Downloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m17.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (2.0.3)\n",
            "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.31.0)\n",
            "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.4)\n",
            "Collecting xxhash (from datasets)\n",
            "  Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m29.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting multiprocess (from datasets)\n",
            "  Downloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m21.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: fsspec[http]<=2024.3.1,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n",
            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.5)\n",
            "Requirement already satisfied: huggingface-hub>=0.21.2 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.23.1)\n",
            "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (24.0)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.1)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.2.0)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.1)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.5)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n",
            "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.21.2->datasets) (4.11.0)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.7)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2024.2.2)\n",
            "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.4)\n",
            "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2024.1)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.16.0)\n",
            "Installing collected packages: xxhash, dill, multiprocess, datasets\n",
            "Successfully installed datasets-2.19.1 dill-0.3.8 multiprocess-0.70.16 xxhash-3.4.1\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install \"unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git\"\n",
        "!pip install --no-deps xformers trl peft accelerate bitsandbytes"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "bNRY4EekyVv0",
        "outputId": "337e20ec-32fb-473a-ce75-1b4602b3e05a"
      },
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git\n",
            "  Cloning https://github.com/unslothai/unsloth.git to /tmp/pip-install-yz9b4cgg/unsloth_b0255de764894292a5ad70b60132ae17\n",
            "  Running command git clone --filter=blob:none --quiet https://github.com/unslothai/unsloth.git /tmp/pip-install-yz9b4cgg/unsloth_b0255de764894292a5ad70b60132ae17\n",
            "  Resolved https://github.com/unslothai/unsloth.git to commit cd1b44878686972d1de60e905215825da330f1e1\n",
            "  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "Collecting tyro (from unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git)\n",
            "  Downloading tyro-0.8.4-py3-none-any.whl (102 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m102.4/102.4 kB\u001b[0m \u001b[31m3.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: transformers>=4.38.2 in /usr/local/lib/python3.10/dist-packages (from unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (4.41.1)\n",
            "Requirement already satisfied: datasets>=2.16.0 in /usr/local/lib/python3.10/dist-packages (from unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (2.19.1)\n",
            "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (from unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (0.1.99)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (4.66.4)\n",
            "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (5.9.5)\n",
            "Requirement already satisfied: wheel>=0.42.0 in /usr/local/lib/python3.10/dist-packages (from unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (0.43.0)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (1.25.2)\n",
            "Requirement already satisfied: protobuf<4.0.0 in /usr/local/lib/python3.10/dist-packages (from unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (3.20.3)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (3.14.0)\n",
            "Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (14.0.2)\n",
            "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (0.6)\n",
            "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (0.3.8)\n",
            "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (2.0.3)\n",
            "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (2.31.0)\n",
            "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (3.4.1)\n",
            "Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (0.70.16)\n",
            "Requirement already satisfied: fsspec[http]<=2024.3.1,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (2023.6.0)\n",
            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (3.9.5)\n",
            "Requirement already satisfied: huggingface-hub>=0.21.2 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (0.23.1)\n",
            "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (24.0)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (6.0.1)\n",
            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.38.2->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (2024.5.15)\n",
            "Requirement already satisfied: tokenizers<0.20,>=0.19 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.38.2->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (0.19.1)\n",
            "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.38.2->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (0.4.3)\n",
            "Requirement already satisfied: docstring-parser>=0.14.1 in /usr/local/lib/python3.10/dist-packages (from tyro->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (0.16)\n",
            "Requirement already satisfied: typing-extensions>=4.7.0 in /usr/local/lib/python3.10/dist-packages (from tyro->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (4.11.0)\n",
            "Requirement already satisfied: rich>=11.1.0 in /usr/local/lib/python3.10/dist-packages (from tyro->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (13.7.1)\n",
            "Collecting shtab>=1.5.6 (from tyro->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git)\n",
            "  Downloading shtab-1.7.1-py3-none-any.whl (14 kB)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (1.3.1)\n",
            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (23.2.0)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (1.4.1)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (6.0.5)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (1.9.4)\n",
            "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (4.0.3)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (3.7)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (2024.2.2)\n",
            "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich>=11.1.0->tyro->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (3.0.0)\n",
            "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich>=11.1.0->tyro->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (2.16.1)\n",
            "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (2023.4)\n",
            "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (2024.1)\n",
            "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich>=11.1.0->tyro->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (0.1.2)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->datasets>=2.16.0->unsloth[colab-new]@ git+https://github.com/unslothai/unsloth.git) (1.16.0)\n",
            "Building wheels for collected packages: unsloth\n",
            "  Building wheel for unsloth (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for unsloth: filename=unsloth-2024.5-py3-none-any.whl size=109128 sha256=d07640c7a49efaa3dcfbf645a27e7b8a03b25d97d757255165955b28d50c7c65\n",
            "  Stored in directory: /tmp/pip-ephem-wheel-cache-74zy8n65/wheels/ed/d4/e9/76fb290ee3df0a5fc21ce5c2c788e29e9607a2353d8342fd0d\n",
            "Successfully built unsloth\n",
            "Installing collected packages: unsloth, shtab, tyro\n",
            "Successfully installed shtab-1.7.1 tyro-0.8.4 unsloth-2024.5\n",
            "Collecting xformers\n",
            "  Downloading xformers-0.0.26.post1-cp310-cp310-manylinux2014_x86_64.whl (222.7 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m222.7/222.7 MB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting trl\n",
            "  Downloading trl-0.8.6-py3-none-any.whl (245 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m245.2/245.2 kB\u001b[0m \u001b[31m36.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting peft\n",
            "  Downloading peft-0.11.1-py3-none-any.whl (251 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m251.6/251.6 kB\u001b[0m \u001b[31m38.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting accelerate\n",
            "  Downloading accelerate-0.30.1-py3-none-any.whl (302 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m302.6/302.6 kB\u001b[0m \u001b[31m43.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting bitsandbytes\n",
            "  Downloading bitsandbytes-0.43.1-py3-none-manylinux_2_24_x86_64.whl (119.8 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m119.8/119.8 MB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hInstalling collected packages: bitsandbytes, xformers, trl, peft, accelerate\n",
            "Successfully installed accelerate-0.30.1 bitsandbytes-0.43.1 peft-0.11.1 trl-0.8.6 xformers-0.0.26.post1\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from datasets import load_dataset,Dataset\n",
        "import torch\n",
        "from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig\n",
        "from peft import prepare_model_for_kbit_training, LoraConfig, TaskType, get_peft_model\n",
        "from transformers import TrainingArguments\n",
        "from trl import SFTTrainer\n",
        "from peft import AutoPeftModelForCausalLM, PeftModel\n",
        "from transformers import AutoModelForCausalLM\n",
        "import os\n",
        "from transformers import GenerationConfig\n",
        "from time import perf_counter\n",
        "from unsloth import FastLanguageModel\n",
        "from unsloth import is_bfloat16_supported"
      ],
      "metadata": {
        "id": "-ixC4T7wztdx"
      },
      "execution_count": 38,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "model_id = \"unsloth/tinyllama-bnb-4bit\"\n",
        "data_id = 'Malikeh1375/medical-question-answering-datasets'\n",
        "output_model = 'doctor_chat_LLM_150_unsloth'\n",
        "\n",
        "def prepare_train_data(data_id):\n",
        "    data = load_dataset(data_id, 'all-processed',split=\"train\")\n",
        "    data_df = data.to_pandas()\n",
        "    data_df[\"text\"] = data_df[['instruction','input','output']].apply(lambda x: \"<|Instruction|>\\n\" + x[\"instruction\"]  +\"</s>\\n<|Input|>\\n\" + x[\"input\"] + \"</s>\\n<|Output|>\\n\"+x['output']+\"</s>\", axis=1)\n",
        "    data = Dataset.from_pandas(data_df)\n",
        "    return data\n",
        "\n",
        "train_data = prepare_train_data(data_id).shuffle(seed=42).select(range(500))\n",
        "\n",
        "print(train_data[0]['text'])"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ZHptL3OqEhdi",
        "outputId": "ccd438ee-f4d1-46e4-dda7-2cae7847aa69"
      },
      "execution_count": 50,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "<|Instruction|>\n",
            "If you are a doctor, please answer the medical questions based on the patient's description.</s>\n",
            "<|Input|>\n",
            "Hi, may I answer your health queries right now ?  Please type your query here...SIR MY PROBLEM IS   SOME TIME AFTER URINATION ,I FELT LIKE SOME THING IS COMING FROM MY PENIS & A CAN SEE THIS IS OILY THICKY SOME DROPE IS COMING & IT IS VERY OILY & LUBRICANT TYPE   WHAT IS THIS   I M VERY WORRIED</s>\n",
            "<|Output|>\n",
            "hi, if you are sexually active then there is a high chance that you may have had a sexually transmitted disease. you need to see a doctor and the fluid would be tested for different types of bacteria, fungi and viruses. you may also need some antibiotics to ensure that you are treated properly. if you are not sexually active it is better also to have the fluid checked for its composition so that we will be able to provide proper management and treatment for your case. hope i have answered your query. let me know if i can assist you further.</s>\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "print(train_data[1]['text'])"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "57puJnWr40rp",
        "outputId": "13d46aa8-cf0d-4c67-b0b4-fbd01fb7d4be"
      },
      "execution_count": 51,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "<|Instruction|>\n",
            "If you are a doctor, please answer the medical questions based on the patient's description.</s>\n",
            "<|Input|>\n",
            "Hi,i have undergone several tests like uv scan,trans vaginal scan and blood tests including hormonal tests and thyroid tests etc. but everything seems normal.we r trying for pregnancy for last one and half year and he too had normal sperm count but we couldn t succeed.i m using trufol,benforce-m and a to z gold multiitamin tablet from before 1 month.i used to get regular periods.in december i have taken premoult to delay my period for some reason and after stopping it i have my period after 3 days ie. dec 25th and in january i have period on 20th but know i missed my period till know and pregnancy test is negative.is their any problem with medicines i mentioned above for delayed period.</s>\n",
            "<|Output|>\n",
            "hi, thanks for your question. i don't think the medicine you are on, or have had could have caused this period problem. you have not provided the details of your test results & from the medicine you are taking i have guessed that you may have an ovulation problem (since you are on metformin, are unable to conceive & have delayed periods). so, my suggestion for you is to register yourself at a good fertility clinic with your partner & get yourself fully evaluated. once a cause is found you may be offered a specific treatment which may be ovulation induction in your case. wish you best of luck</s>\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "train_data"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "F9xwbYPD107L",
        "outputId": "a17be6ac-de80-4013-f17d-f8d64794f335"
      },
      "execution_count": 52,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "Dataset({\n",
              "    features: ['instruction', 'input', 'output', '__index_level_0__', 'text'],\n",
              "    num_rows: 500\n",
              "})"
            ]
          },
          "metadata": {},
          "execution_count": 52
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "model, tokenizer = FastLanguageModel.from_pretrained(\n",
        "    model_name = \"unsloth/tinyllama-bnb-4bit\", # \"unsloth/tinyllama\" for 16bit loading\n",
        "    max_seq_length = 1500,\n",
        "    dtype = None,\n",
        "    load_in_4bit = True,\n",
        "    # token = \"hf_...\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n",
        ")\n",
        "\n",
        "print(model)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 499
        },
        "id": "Ic5lF0DNyLji",
        "outputId": "8c70c2f6-af0d-4b99-c60f-a7dc81df06d4"
      },
      "execution_count": 54,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "==((====))==  Unsloth: Fast Llama patching release 2024.5\n",
            "   \\\\   /|    GPU: Tesla T4. Max memory: 14.748 GB. Platform = Linux.\n",
            "O^O/ \\_/ \\    Pytorch: 2.3.0+cu121. CUDA = 7.5. CUDA Toolkit = 12.1.\n",
            "\\        /    Bfloat16 = FALSE. Xformers = 0.0.26.post1. FA = False.\n",
            " \"-____-\"     Free Apache license: http://github.com/unslothai/unsloth\n"
          ]
        },
        {
          "output_type": "error",
          "ename": "ValueError",
          "evalue": "Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to `from_pretrained`. Check https://huggingface.co./docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu for more details. ",
          "traceback": [
            "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
            "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
            "\u001b[0;32m<ipython-input-54-43ef74bf5388>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m model, tokenizer = FastLanguageModel.from_pretrained(\n\u001b[0m\u001b[1;32m      2\u001b[0m     \u001b[0mmodel_name\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"unsloth/tinyllama-bnb-4bit\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;31m# \"unsloth/tinyllama\" for 16bit loading\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m     \u001b[0mmax_seq_length\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1000\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m     \u001b[0mdtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m     \u001b[0mload_in_4bit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/unsloth/models/loader.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(model_name, max_seq_length, dtype, load_in_4bit, token, device_map, rope_scaling, fix_tokenizer, trust_remote_code, use_gradient_checkpointing, resize_model_vocab, *args, **kwargs)\u001b[0m\n\u001b[1;32m    140\u001b[0m         \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    141\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 142\u001b[0;31m         model, tokenizer = dispatch_model.from_pretrained(\n\u001b[0m\u001b[1;32m    143\u001b[0m             \u001b[0mmodel_name\u001b[0m     \u001b[0;34m=\u001b[0m \u001b[0mmodel_name\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    144\u001b[0m             \u001b[0mmax_seq_length\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmax_seq_length\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/unsloth/models/llama.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(model_name, max_seq_length, dtype, load_in_4bit, token, device_map, rope_scaling, fix_tokenizer, model_patcher, tokenizer_name, trust_remote_code, **kwargs)\u001b[0m\n\u001b[1;32m   1133\u001b[0m                 )\n\u001b[1;32m   1134\u001b[0m             \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1135\u001b[0;31m                 \u001b[0;32mraise\u001b[0m \u001b[0merror\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1136\u001b[0m             \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1137\u001b[0m         \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/unsloth/models/llama.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(model_name, max_seq_length, dtype, load_in_4bit, token, device_map, rope_scaling, fix_tokenizer, model_patcher, tokenizer_name, trust_remote_code, **kwargs)\u001b[0m\n\u001b[1;32m   1104\u001b[0m         \u001b[0mmax_position_embeddings\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmax_seq_length\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel_max_seq_length\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1105\u001b[0m         \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1106\u001b[0;31m             model = AutoModelForCausalLM.from_pretrained(\n\u001b[0m\u001b[1;32m   1107\u001b[0m                 \u001b[0mmodel_name\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1108\u001b[0m                 \u001b[0mdevice_map\u001b[0m              \u001b[0;34m=\u001b[0m \u001b[0mdevice_map\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m    561\u001b[0m         \u001b[0;32melif\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_model_mapping\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    562\u001b[0m             \u001b[0mmodel_class\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_get_model_class\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_model_mapping\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 563\u001b[0;31m             return model_class.from_pretrained(\n\u001b[0m\u001b[1;32m    564\u001b[0m                 \u001b[0mpretrained_model_name_or_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mmodel_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mhub_kwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    565\u001b[0m             )\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m   3701\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   3702\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0mhf_quantizer\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3703\u001b[0;31m                 \u001b[0mhf_quantizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalidate_environment\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdevice_map\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdevice_map\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   3704\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   3705\u001b[0m         \u001b[0;32melif\u001b[0m \u001b[0mdevice_map\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_bnb_4bit.py\u001b[0m in \u001b[0;36mvalidate_environment\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m     83\u001b[0m             }\n\u001b[1;32m     84\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0;34m\"cpu\"\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdevice_map_without_lm_head\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;34m\"disk\"\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdevice_map_without_lm_head\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 85\u001b[0;31m                 raise ValueError(\n\u001b[0m\u001b[1;32m     86\u001b[0m                     \u001b[0;34m\"Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     87\u001b[0m                     \u001b[0;34m\"quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;31mValueError\u001b[0m: Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to `from_pretrained`. Check https://huggingface.co./docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu for more details. "
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "model = FastLanguageModel.get_peft_model(\n",
        "    model,\n",
        "    r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n",
        "    target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n",
        "                      \"gate_proj\", \"up_proj\", \"down_proj\",],\n",
        "    lora_alpha = 32,\n",
        "    lora_dropout = 0, # Currently only supports dropout = 0\n",
        "    bias = \"none\",    # Currently only supports bias = \"none\"\n",
        "    use_gradient_checkpointing = True, # @@@ IF YOU GET OUT OF MEMORY - set to True @@@\n",
        "    random_state = 42,\n",
        "    use_rslora = False,  # We support rank stabilized LoRA\n",
        "    loftq_config = None, # And LoftQ\n",
        ")"
      ],
      "metadata": {
        "id": "-EGbwycpzb4j"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "trainer = SFTTrainer(\n",
        "    model = model,\n",
        "    tokenizer = tokenizer,\n",
        "    train_dataset = train_data,\n",
        "    dataset_text_field = \"text\",\n",
        "    max_seq_length = 1500,\n",
        "    packing = True, # Packs short sequences together to save time!\n",
        "    args = TrainingArguments(\n",
        "        per_device_train_batch_size = 8,\n",
        "        gradient_accumulation_steps = 4,\n",
        "        warmup_ratio = 0.1,\n",
        "        num_train_epochs = 10,\n",
        "        max_steps=200,\n",
        "        learning_rate = 2e-5,\n",
        "        fp16 = not is_bfloat16_supported(),\n",
        "        bf16 = is_bfloat16_supported(),\n",
        "        logging_steps = 1,\n",
        "        optim = \"adamw_8bit\",\n",
        "        weight_decay = 0.1,\n",
        "        lr_scheduler_type = \"linear\",\n",
        "        output_dir = output_model,\n",
        "    ),\n",
        ")\n",
        "trainer.train()"
      ],
      "metadata": {
        "id": "Qy6yK4FLze4f"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "train_data[1]['text']"
      ],
      "metadata": {
        "id": "wBEwT9up9DSz"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "FastLanguageModel.for_inference(model)\n",
        "\n",
        "def formatted_prompt(Instruction,input)-> str:\n",
        "    return f\"<|Instruction|>\\n{Instruction}</s>\\n<|input|>\\n{input}</s>\\n<|output|>\"\n",
        "\n",
        "def generate_response(Instruction,user_input):\n",
        "\n",
        "  prompt = formatted_prompt(Instruction,user_input)\n",
        "  print(prompt)\n",
        "\n",
        "  start_time = perf_counter()\n",
        "\n",
        "  inputs = tokenizer(prompt, return_tensors=\"pt\").to('cuda')\n",
        "\n",
        "  outputs = model.generate(**inputs, max_new_tokens = 150, use_cache = True)\n",
        "  print(tokenizer.batch_decode(outputs))\n",
        "  output_time = perf_counter() - start_time\n",
        "  print(f\"Time taken for inference: {round(output_time,2)} seconds\")\n",
        "\n",
        "\n",
        "Instruction = \"If you are a doctor, please answer the medical questions based on the patient's description.\"\n",
        "user_input = 'I am a 20 year old boy.I am having frequent headaches what should i do?What temprory steps should i take?'\n",
        "\n",
        "generate_response(Instruction,user_input)"
      ],
      "metadata": {
        "id": "32lR_kynzmuv"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "9FulpdS10A_X"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}