--- license: cc-by-sa-3.0 datasets: - VMware/open-instruct-v1-oasst-dolly-hhrlhf language: - en library_name: transformers pipeline_tag: text-generation --- # VMware/open-llama-13B-open-instruct Instruction-tuned version of the fully trained Open LLama 13B model. The model is open for COMMERCIAL USE.
NOTE : The model was trained using the Alpaca prompt template \ NOTE : Fast tokenizer results in incorrect encoding, set the ```use_fast = False``` parameter, when instantiating the tokenizer\ NOTE : The model might struggle with code as the tokenizer merges multiple spaces ## License - Commercially Viable - Instruction dataset, [VMware/open-instruct-v1-oasst-dolly-hhrlhf](https://huggingface.co./datasets/VMware/open-instruct-v1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0 - Language Model, ([openlm-research/open_llama_13b](https://huggingface.co./openlm-research/open_llama_13b)) is under apache-2.0 ## Nomenclature - Model : Open-llama - Model Size: 13B parameters - Dataset: Open-instruct-v1 (oasst,dolly, hhrlhf) ## Use in Transformers ``` import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = 'VMware/open-llama-13b-open-instruct' tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='sequential') prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:" prompt = 'Explain in simple terms how the attention mechanism of a transformer model works' inputt = prompt_template.format(instruction= prompt) input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda") output1 = model.generate(input_ids, max_length=512) input_length = input_ids.shape[1] output1 = output1[:, input_length:] output = tokenizer.decode(output1[0]) print(output) ``` ## Finetuning details The finetuning scripts will be available in our [RAIL Github Repository](https://github.com/vmware-labs/research-and-development-artificial-intelligence-lab/tree/main/instruction-tuning) ## Evaluation TODO