VGLee commited on
Commit
64b52cd
·
verified ·
1 Parent(s): b67b306

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: Qwen/Qwen1.5-4B
4
+ tags:
5
+ - llama-factory
6
+ - full
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 4b_galore
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # 4b_galore
17
+
18
+ This model is a fine-tuned version of [/root/autodl-tmp/ner_project/model/Qwen1.5-4B](https://huggingface.co//root/autodl-tmp/ner_project/model/Qwen1.5-4B) on the universal_ner_all dataset.
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 1e-05
38
+ - train_batch_size: 2
39
+ - eval_batch_size: 1
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 8
42
+ - total_train_batch_size: 16
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: cosine
45
+ - lr_scheduler_warmup_steps: 200
46
+ - num_epochs: 1.0
47
+
48
+ ### Training results
49
+
50
+
51
+
52
+ ### Framework versions
53
+
54
+ - Transformers 4.39.2
55
+ - Pytorch 2.2.2+cu121
56
+ - Datasets 2.18.0
57
+ - Tokenizers 0.15.2
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: Qwen/Qwen1.5-4B
4
+ tags:
5
+ - llama-factory
6
+ - full
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 4b_galore
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # 4b_galore
17
+
18
+ This model is a fine-tuned version of [/root/autodl-tmp/ner_project/model/Qwen1.5-4B](https://huggingface.co//root/autodl-tmp/ner_project/model/Qwen1.5-4B) on the universal_ner_all dataset.
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 1e-05
38
+ - train_batch_size: 2
39
+ - eval_batch_size: 1
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 8
42
+ - total_train_batch_size: 16
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: cosine
45
+ - lr_scheduler_warmup_steps: 200
46
+ - num_epochs: 1.0
47
+
48
+ ### Training results
49
+
50
+
51
+
52
+ ### Framework versions
53
+
54
+ - Transformers 4.39.2
55
+ - Pytorch 2.2.2+cu121
56
+ - Datasets 2.18.0
57
+ - Tokenizers 0.15.2
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
all_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 0.25344288444270907,
4
+ "train_runtime": 45378.653,
5
+ "train_samples_per_second": 2.033,
6
+ "train_steps_per_second": 0.127
7
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/autodl-tmp/ner_project/model/Qwen1.5-4B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2560,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 6912,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 21,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 20,
17
+ "num_hidden_layers": 40,
18
+ "num_key_value_heads": 20,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_theta": 5000000.0,
21
+ "sliding_window": 32768,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.39.2",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151936
28
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.39.2"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44753e72a3f9d2bbcf8217cd2c47884ab3a726c37101eb8f8762ebb59dbcd5f7
3
+ size 4989973456
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f123c4c4395a23665187a1012e2af6fb05a18b2fb4b1c6faef7d658829d564b5
3
+ size 2910820520
model.safetensors.index.json ADDED
@@ -0,0 +1,490 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7900738560
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00002-of-00002.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00002-of-00002.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00002-of-00002.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00002-of-00002.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
441
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
442
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
443
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
444
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
445
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
446
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
447
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
448
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
449
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
450
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
451
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
452
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
453
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
454
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
455
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
456
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
457
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
458
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
459
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
460
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
461
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
462
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
463
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
464
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
465
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
466
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
467
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
468
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
469
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
470
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
471
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
472
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
473
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
474
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
475
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
476
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
477
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
478
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
479
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
480
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
481
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
482
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
483
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
484
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
485
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
486
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
487
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
488
+ "model.norm.weight": "model-00002-of-00002.safetensors"
489
+ }
490
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% set system_message = 'You are a helpful assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\\n' + system_message + '<|im_end|>\\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\\n' + content + '<|im_end|>\\n<|im_start|>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\\n' }}{% endif %}{% endfor %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "padding_side": "right",
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "Qwen2Tokenizer",
43
+ "unk_token": null
44
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 0.25344288444270907,
4
+ "train_runtime": 45378.653,
5
+ "train_samples_per_second": 2.033,
6
+ "train_steps_per_second": 0.127
7
+ }
trainer_log.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,4062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9998915989159891,
5
+ "eval_steps": 500,
6
+ "global_step": 5765,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 92.0,
14
+ "learning_rate": 5.000000000000001e-07,
15
+ "loss": 1.7712,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "grad_norm": 84.0,
21
+ "learning_rate": 1.0000000000000002e-06,
22
+ "loss": 1.7512,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "grad_norm": 74.5,
28
+ "learning_rate": 1.5e-06,
29
+ "loss": 1.7434,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.01,
34
+ "grad_norm": 73.5,
35
+ "learning_rate": 2.0000000000000003e-06,
36
+ "loss": 1.5907,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.01,
41
+ "grad_norm": 60.25,
42
+ "learning_rate": 2.5e-06,
43
+ "loss": 1.5682,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "grad_norm": 42.0,
49
+ "learning_rate": 3e-06,
50
+ "loss": 1.3992,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "grad_norm": 26.375,
56
+ "learning_rate": 3.5e-06,
57
+ "loss": 1.1574,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.01,
62
+ "grad_norm": 22.375,
63
+ "learning_rate": 4.000000000000001e-06,
64
+ "loss": 1.0237,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.02,
69
+ "grad_norm": 14.875,
70
+ "learning_rate": 4.5e-06,
71
+ "loss": 0.7855,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.02,
76
+ "grad_norm": 11.625,
77
+ "learning_rate": 5e-06,
78
+ "loss": 0.661,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.02,
83
+ "grad_norm": 8.9375,
84
+ "learning_rate": 5.500000000000001e-06,
85
+ "loss": 0.4601,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.02,
90
+ "grad_norm": 7.78125,
91
+ "learning_rate": 6e-06,
92
+ "loss": 0.4192,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.02,
97
+ "grad_norm": 8.5,
98
+ "learning_rate": 6.5000000000000004e-06,
99
+ "loss": 0.3707,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.02,
104
+ "grad_norm": 4.96875,
105
+ "learning_rate": 7e-06,
106
+ "loss": 0.35,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.03,
111
+ "grad_norm": 5.5625,
112
+ "learning_rate": 7.500000000000001e-06,
113
+ "loss": 0.3235,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.03,
118
+ "grad_norm": 5.78125,
119
+ "learning_rate": 8.000000000000001e-06,
120
+ "loss": 0.3424,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.03,
125
+ "grad_norm": 4.65625,
126
+ "learning_rate": 8.5e-06,
127
+ "loss": 0.3181,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.03,
132
+ "grad_norm": 5.65625,
133
+ "learning_rate": 9e-06,
134
+ "loss": 0.3155,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.03,
139
+ "grad_norm": 5.1875,
140
+ "learning_rate": 9.5e-06,
141
+ "loss": 0.3076,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.03,
146
+ "grad_norm": 7.40625,
147
+ "learning_rate": 1e-05,
148
+ "loss": 0.2837,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.04,
153
+ "grad_norm": 6.9375,
154
+ "learning_rate": 9.999920327533304e-06,
155
+ "loss": 0.3127,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.04,
160
+ "grad_norm": 6.84375,
161
+ "learning_rate": 9.999681312672292e-06,
162
+ "loss": 0.2662,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.04,
167
+ "grad_norm": 6.6875,
168
+ "learning_rate": 9.999282963034126e-06,
169
+ "loss": 0.2758,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.04,
174
+ "grad_norm": 5.3125,
175
+ "learning_rate": 9.998725291313807e-06,
176
+ "loss": 0.2859,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.04,
181
+ "grad_norm": 6.71875,
182
+ "learning_rate": 9.998008315283767e-06,
183
+ "loss": 0.2986,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.05,
188
+ "grad_norm": 5.875,
189
+ "learning_rate": 9.997132057793306e-06,
190
+ "loss": 0.3098,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.05,
195
+ "grad_norm": 4.9375,
196
+ "learning_rate": 9.99609654676786e-06,
197
+ "loss": 0.2845,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.05,
202
+ "grad_norm": 6.25,
203
+ "learning_rate": 9.99490181520812e-06,
204
+ "loss": 0.2702,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.05,
209
+ "grad_norm": 5.65625,
210
+ "learning_rate": 9.993547901188966e-06,
211
+ "loss": 0.2765,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.05,
216
+ "grad_norm": 5.34375,
217
+ "learning_rate": 9.992034847858267e-06,
218
+ "loss": 0.3171,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.05,
223
+ "grad_norm": 5.84375,
224
+ "learning_rate": 9.990362703435504e-06,
225
+ "loss": 0.2675,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.06,
230
+ "grad_norm": 5.59375,
231
+ "learning_rate": 9.988531521210219e-06,
232
+ "loss": 0.2757,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.06,
237
+ "grad_norm": 5.625,
238
+ "learning_rate": 9.986541359540337e-06,
239
+ "loss": 0.2659,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.06,
244
+ "grad_norm": 5.8125,
245
+ "learning_rate": 9.984392281850293e-06,
246
+ "loss": 0.2555,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.06,
251
+ "grad_norm": 4.65625,
252
+ "learning_rate": 9.982084356629014e-06,
253
+ "loss": 0.2934,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.06,
258
+ "grad_norm": 6.09375,
259
+ "learning_rate": 9.979617657427742e-06,
260
+ "loss": 0.2773,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.06,
265
+ "grad_norm": 5.375,
266
+ "learning_rate": 9.976992262857677e-06,
267
+ "loss": 0.2664,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.07,
272
+ "grad_norm": 6.15625,
273
+ "learning_rate": 9.974208256587488e-06,
274
+ "loss": 0.2833,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.07,
279
+ "grad_norm": 6.0,
280
+ "learning_rate": 9.971265727340627e-06,
281
+ "loss": 0.2797,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.07,
286
+ "grad_norm": 5.25,
287
+ "learning_rate": 9.968164768892527e-06,
288
+ "loss": 0.2636,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.07,
293
+ "grad_norm": 9.25,
294
+ "learning_rate": 9.964905480067585e-06,
295
+ "loss": 0.2526,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.07,
300
+ "grad_norm": 5.15625,
301
+ "learning_rate": 9.961487964736038e-06,
302
+ "loss": 0.2647,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.07,
307
+ "grad_norm": 7.84375,
308
+ "learning_rate": 9.957912331810633e-06,
309
+ "loss": 0.2701,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.08,
314
+ "grad_norm": 4.84375,
315
+ "learning_rate": 9.954178695243171e-06,
316
+ "loss": 0.2953,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.08,
321
+ "grad_norm": 5.9375,
322
+ "learning_rate": 9.950287174020864e-06,
323
+ "loss": 0.2903,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.08,
328
+ "grad_norm": 4.3125,
329
+ "learning_rate": 9.94623789216255e-06,
330
+ "loss": 0.2421,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.08,
335
+ "grad_norm": 5.21875,
336
+ "learning_rate": 9.94203097871474e-06,
337
+ "loss": 0.2815,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.08,
342
+ "grad_norm": 5.90625,
343
+ "learning_rate": 9.9376665677475e-06,
344
+ "loss": 0.273,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.08,
349
+ "grad_norm": 4.96875,
350
+ "learning_rate": 9.933144798350191e-06,
351
+ "loss": 0.2521,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.09,
356
+ "grad_norm": 5.75,
357
+ "learning_rate": 9.928465814627016e-06,
358
+ "loss": 0.2625,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.09,
363
+ "grad_norm": 4.75,
364
+ "learning_rate": 9.923629765692445e-06,
365
+ "loss": 0.2406,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.09,
370
+ "grad_norm": 5.15625,
371
+ "learning_rate": 9.918636805666459e-06,
372
+ "loss": 0.2282,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.09,
377
+ "grad_norm": 5.15625,
378
+ "learning_rate": 9.913487093669633e-06,
379
+ "loss": 0.2554,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.09,
384
+ "grad_norm": 5.375,
385
+ "learning_rate": 9.908180793818072e-06,
386
+ "loss": 0.2616,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.1,
391
+ "grad_norm": 5.59375,
392
+ "learning_rate": 9.902718075218176e-06,
393
+ "loss": 0.2643,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.1,
398
+ "grad_norm": 5.5625,
399
+ "learning_rate": 9.897099111961248e-06,
400
+ "loss": 0.2638,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.1,
405
+ "grad_norm": 5.5625,
406
+ "learning_rate": 9.891324083117954e-06,
407
+ "loss": 0.2652,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.1,
412
+ "grad_norm": 4.875,
413
+ "learning_rate": 9.885393172732615e-06,
414
+ "loss": 0.2469,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.1,
419
+ "grad_norm": 6.3125,
420
+ "learning_rate": 9.879306569817331e-06,
421
+ "loss": 0.2286,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.1,
426
+ "grad_norm": 4.59375,
427
+ "learning_rate": 9.87306446834597e-06,
428
+ "loss": 0.2333,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.11,
433
+ "grad_norm": 5.03125,
434
+ "learning_rate": 9.866667067247982e-06,
435
+ "loss": 0.2295,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.11,
440
+ "grad_norm": 5.03125,
441
+ "learning_rate": 9.860114570402055e-06,
442
+ "loss": 0.2569,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.11,
447
+ "grad_norm": 5.15625,
448
+ "learning_rate": 9.853407186629626e-06,
449
+ "loss": 0.2573,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.11,
454
+ "grad_norm": 4.40625,
455
+ "learning_rate": 9.846545129688218e-06,
456
+ "loss": 0.2728,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.11,
461
+ "grad_norm": 4.34375,
462
+ "learning_rate": 9.839528618264633e-06,
463
+ "loss": 0.2387,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.11,
468
+ "grad_norm": 5.34375,
469
+ "learning_rate": 9.832357875967979e-06,
470
+ "loss": 0.2584,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.12,
475
+ "grad_norm": 4.8125,
476
+ "learning_rate": 9.825033131322548e-06,
477
+ "loss": 0.2672,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.12,
482
+ "grad_norm": 5.78125,
483
+ "learning_rate": 9.817554617760529e-06,
484
+ "loss": 0.2352,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.12,
489
+ "grad_norm": 4.75,
490
+ "learning_rate": 9.80992257361457e-06,
491
+ "loss": 0.2617,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.12,
496
+ "grad_norm": 4.6875,
497
+ "learning_rate": 9.802137242110185e-06,
498
+ "loss": 0.267,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.12,
503
+ "grad_norm": 7.0,
504
+ "learning_rate": 9.794198871358002e-06,
505
+ "loss": 0.2871,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.12,
510
+ "grad_norm": 5.5,
511
+ "learning_rate": 9.78610771434585e-06,
512
+ "loss": 0.2308,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.13,
517
+ "grad_norm": 5.4375,
518
+ "learning_rate": 9.777864028930705e-06,
519
+ "loss": 0.2549,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.13,
524
+ "grad_norm": 5.0625,
525
+ "learning_rate": 9.769468077830467e-06,
526
+ "loss": 0.273,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.13,
531
+ "grad_norm": 6.09375,
532
+ "learning_rate": 9.760920128615592e-06,
533
+ "loss": 0.2356,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.13,
538
+ "grad_norm": 4.1875,
539
+ "learning_rate": 9.752220453700556e-06,
540
+ "loss": 0.2354,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.13,
545
+ "grad_norm": 4.5625,
546
+ "learning_rate": 9.743369330335186e-06,
547
+ "loss": 0.2374,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.14,
552
+ "grad_norm": 4.71875,
553
+ "learning_rate": 9.734367040595813e-06,
554
+ "loss": 0.2604,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.14,
559
+ "grad_norm": 6.3125,
560
+ "learning_rate": 9.725213871376292e-06,
561
+ "loss": 0.2514,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.14,
566
+ "grad_norm": 5.3125,
567
+ "learning_rate": 9.715910114378845e-06,
568
+ "loss": 0.2446,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.14,
573
+ "grad_norm": 5.34375,
574
+ "learning_rate": 9.706456066104786e-06,
575
+ "loss": 0.2494,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.14,
580
+ "grad_norm": 4.40625,
581
+ "learning_rate": 9.69685202784505e-06,
582
+ "loss": 0.245,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.14,
587
+ "grad_norm": 5.03125,
588
+ "learning_rate": 9.687098305670606e-06,
589
+ "loss": 0.2491,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.15,
594
+ "grad_norm": 5.15625,
595
+ "learning_rate": 9.677195210422694e-06,
596
+ "loss": 0.249,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.15,
601
+ "grad_norm": 4.625,
602
+ "learning_rate": 9.667143057702926e-06,
603
+ "loss": 0.2512,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.15,
608
+ "grad_norm": 4.5625,
609
+ "learning_rate": 9.656942167863221e-06,
610
+ "loss": 0.2543,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.15,
615
+ "grad_norm": 7.375,
616
+ "learning_rate": 9.646592865995606e-06,
617
+ "loss": 0.2831,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.15,
622
+ "grad_norm": 4.71875,
623
+ "learning_rate": 9.63609548192184e-06,
624
+ "loss": 0.2498,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.15,
629
+ "grad_norm": 5.25,
630
+ "learning_rate": 9.625450350182919e-06,
631
+ "loss": 0.2649,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.16,
636
+ "grad_norm": 5.90625,
637
+ "learning_rate": 9.614657810028402e-06,
638
+ "loss": 0.2461,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.16,
643
+ "grad_norm": 5.5,
644
+ "learning_rate": 9.60371820540561e-06,
645
+ "loss": 0.2497,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.16,
650
+ "grad_norm": 5.21875,
651
+ "learning_rate": 9.592631884948654e-06,
652
+ "loss": 0.264,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.16,
657
+ "grad_norm": 5.3125,
658
+ "learning_rate": 9.581399201967336e-06,
659
+ "loss": 0.2464,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.16,
664
+ "grad_norm": 5.34375,
665
+ "learning_rate": 9.57002051443588e-06,
666
+ "loss": 0.2708,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.16,
671
+ "grad_norm": 4.9375,
672
+ "learning_rate": 9.558496184981525e-06,
673
+ "loss": 0.2542,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.17,
678
+ "grad_norm": 4.59375,
679
+ "learning_rate": 9.546826580872975e-06,
680
+ "loss": 0.2296,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.17,
685
+ "grad_norm": 5.6875,
686
+ "learning_rate": 9.535012074008688e-06,
687
+ "loss": 0.2507,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.17,
692
+ "grad_norm": 3.828125,
693
+ "learning_rate": 9.523053040905024e-06,
694
+ "loss": 0.2376,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.17,
699
+ "grad_norm": 6.5,
700
+ "learning_rate": 9.510949862684249e-06,
701
+ "loss": 0.2542,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.17,
706
+ "grad_norm": 5.96875,
707
+ "learning_rate": 9.498702925062393e-06,
708
+ "loss": 0.2341,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.18,
713
+ "grad_norm": 5.28125,
714
+ "learning_rate": 9.486312618336944e-06,
715
+ "loss": 0.2549,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.18,
720
+ "grad_norm": 4.84375,
721
+ "learning_rate": 9.473779337374422e-06,
722
+ "loss": 0.2472,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.18,
727
+ "grad_norm": 5.8125,
728
+ "learning_rate": 9.461103481597795e-06,
729
+ "loss": 0.2287,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.18,
734
+ "grad_norm": 5.3125,
735
+ "learning_rate": 9.448285454973739e-06,
736
+ "loss": 0.2331,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.18,
741
+ "grad_norm": 5.375,
742
+ "learning_rate": 9.435325665999771e-06,
743
+ "loss": 0.212,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.18,
748
+ "grad_norm": 4.71875,
749
+ "learning_rate": 9.422224527691236e-06,
750
+ "loss": 0.245,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.19,
755
+ "grad_norm": 5.25,
756
+ "learning_rate": 9.408982457568138e-06,
757
+ "loss": 0.2361,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.19,
762
+ "grad_norm": 4.96875,
763
+ "learning_rate": 9.395599877641832e-06,
764
+ "loss": 0.2422,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.19,
769
+ "grad_norm": 3.859375,
770
+ "learning_rate": 9.382077214401578e-06,
771
+ "loss": 0.2378,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.19,
776
+ "grad_norm": 4.34375,
777
+ "learning_rate": 9.368414898800951e-06,
778
+ "loss": 0.2358,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.19,
783
+ "grad_norm": 4.78125,
784
+ "learning_rate": 9.354613366244108e-06,
785
+ "loss": 0.2427,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.19,
790
+ "grad_norm": 5.71875,
791
+ "learning_rate": 9.3406730565719e-06,
792
+ "loss": 0.255,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.2,
797
+ "grad_norm": 4.625,
798
+ "learning_rate": 9.326594414047877e-06,
799
+ "loss": 0.2356,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.2,
804
+ "grad_norm": 4.96875,
805
+ "learning_rate": 9.312377887344105e-06,
806
+ "loss": 0.2535,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.2,
811
+ "grad_norm": 5.8125,
812
+ "learning_rate": 9.298023929526888e-06,
813
+ "loss": 0.2507,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.2,
818
+ "grad_norm": 4.78125,
819
+ "learning_rate": 9.283532998042314e-06,
820
+ "loss": 0.2428,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.2,
825
+ "grad_norm": 4.21875,
826
+ "learning_rate": 9.268905554701686e-06,
827
+ "loss": 0.2119,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.2,
832
+ "grad_norm": 5.53125,
833
+ "learning_rate": 9.254142065666802e-06,
834
+ "loss": 0.2296,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.21,
839
+ "grad_norm": 5.0625,
840
+ "learning_rate": 9.239243001435095e-06,
841
+ "loss": 0.2247,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.21,
846
+ "grad_norm": 5.75,
847
+ "learning_rate": 9.224208836824646e-06,
848
+ "loss": 0.2581,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.21,
853
+ "grad_norm": 5.25,
854
+ "learning_rate": 9.209040050959048e-06,
855
+ "loss": 0.2118,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.21,
860
+ "grad_norm": 4.28125,
861
+ "learning_rate": 9.193737127252132e-06,
862
+ "loss": 0.2242,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.21,
867
+ "grad_norm": 6.28125,
868
+ "learning_rate": 9.178300553392574e-06,
869
+ "loss": 0.2034,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.22,
874
+ "grad_norm": 4.8125,
875
+ "learning_rate": 9.162730821328338e-06,
876
+ "loss": 0.2251,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.22,
881
+ "grad_norm": 5.09375,
882
+ "learning_rate": 9.14702842725101e-06,
883
+ "loss": 0.2518,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.22,
888
+ "grad_norm": 5.03125,
889
+ "learning_rate": 9.131193871579975e-06,
890
+ "loss": 0.2258,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.22,
895
+ "grad_norm": 5.0625,
896
+ "learning_rate": 9.115227658946479e-06,
897
+ "loss": 0.2365,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.22,
902
+ "grad_norm": 4.34375,
903
+ "learning_rate": 9.099130298177538e-06,
904
+ "loss": 0.2382,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.22,
909
+ "grad_norm": 6.78125,
910
+ "learning_rate": 9.082902302279728e-06,
911
+ "loss": 0.2425,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.23,
916
+ "grad_norm": 5.6875,
917
+ "learning_rate": 9.066544188422837e-06,
918
+ "loss": 0.2398,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.23,
923
+ "grad_norm": 6.625,
924
+ "learning_rate": 9.050056477923373e-06,
925
+ "loss": 0.2401,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.23,
930
+ "grad_norm": 4.9375,
931
+ "learning_rate": 9.033439696227966e-06,
932
+ "loss": 0.2307,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.23,
937
+ "grad_norm": 5.21875,
938
+ "learning_rate": 9.016694372896609e-06,
939
+ "loss": 0.2127,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.23,
944
+ "grad_norm": 4.84375,
945
+ "learning_rate": 8.999821041585788e-06,
946
+ "loss": 0.2414,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.23,
951
+ "grad_norm": 6.65625,
952
+ "learning_rate": 8.982820240031473e-06,
953
+ "loss": 0.2347,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.24,
958
+ "grad_norm": 4.5625,
959
+ "learning_rate": 8.965692510031985e-06,
960
+ "loss": 0.235,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.24,
965
+ "grad_norm": 4.8125,
966
+ "learning_rate": 8.948438397430721e-06,
967
+ "loss": 0.238,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.24,
972
+ "grad_norm": 4.84375,
973
+ "learning_rate": 8.931058452098767e-06,
974
+ "loss": 0.2306,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.24,
979
+ "grad_norm": 5.40625,
980
+ "learning_rate": 8.913553227917366e-06,
981
+ "loss": 0.2514,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 0.24,
986
+ "grad_norm": 5.1875,
987
+ "learning_rate": 8.89592328276028e-06,
988
+ "loss": 0.2172,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 0.24,
993
+ "grad_norm": 4.59375,
994
+ "learning_rate": 8.87816917847599e-06,
995
+ "loss": 0.2327,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 0.25,
1000
+ "grad_norm": 5.1875,
1001
+ "learning_rate": 8.860291480869814e-06,
1002
+ "loss": 0.2281,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 0.25,
1007
+ "grad_norm": 6.0625,
1008
+ "learning_rate": 8.842290759685857e-06,
1009
+ "loss": 0.2304,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 0.25,
1014
+ "grad_norm": 4.625,
1015
+ "learning_rate": 8.824167588588862e-06,
1016
+ "loss": 0.2179,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 0.25,
1021
+ "grad_norm": 4.34375,
1022
+ "learning_rate": 8.805922545145929e-06,
1023
+ "loss": 0.2323,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 0.25,
1028
+ "grad_norm": 5.5,
1029
+ "learning_rate": 8.787556210808101e-06,
1030
+ "loss": 0.2341,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 0.25,
1035
+ "grad_norm": 4.875,
1036
+ "learning_rate": 8.769069170891845e-06,
1037
+ "loss": 0.2508,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 0.26,
1042
+ "grad_norm": 5.28125,
1043
+ "learning_rate": 8.750462014560391e-06,
1044
+ "loss": 0.2418,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 0.26,
1049
+ "grad_norm": 5.53125,
1050
+ "learning_rate": 8.731735334804953e-06,
1051
+ "loss": 0.2229,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 0.26,
1056
+ "grad_norm": 4.21875,
1057
+ "learning_rate": 8.712889728425842e-06,
1058
+ "loss": 0.2274,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 0.26,
1063
+ "grad_norm": 4.5625,
1064
+ "learning_rate": 8.693925796013434e-06,
1065
+ "loss": 0.2435,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 0.26,
1070
+ "grad_norm": 4.375,
1071
+ "learning_rate": 8.67484414192904e-06,
1072
+ "loss": 0.252,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 0.27,
1077
+ "grad_norm": 5.03125,
1078
+ "learning_rate": 8.655645374285637e-06,
1079
+ "loss": 0.2215,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 0.27,
1084
+ "grad_norm": 5.375,
1085
+ "learning_rate": 8.6363301049285e-06,
1086
+ "loss": 0.2539,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 0.27,
1091
+ "grad_norm": 6.3125,
1092
+ "learning_rate": 8.616898949415688e-06,
1093
+ "loss": 0.2166,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 0.27,
1098
+ "grad_norm": 5.09375,
1099
+ "learning_rate": 8.597352526998437e-06,
1100
+ "loss": 0.2447,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 0.27,
1105
+ "grad_norm": 5.3125,
1106
+ "learning_rate": 8.577691460601422e-06,
1107
+ "loss": 0.2308,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 0.27,
1112
+ "grad_norm": 5.0625,
1113
+ "learning_rate": 8.55791637680291e-06,
1114
+ "loss": 0.2145,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 0.28,
1119
+ "grad_norm": 4.96875,
1120
+ "learning_rate": 8.538027905814778e-06,
1121
+ "loss": 0.2396,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 0.28,
1126
+ "grad_norm": 4.96875,
1127
+ "learning_rate": 8.518026681462448e-06,
1128
+ "loss": 0.2334,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 0.28,
1133
+ "grad_norm": 5.1875,
1134
+ "learning_rate": 8.49791334116467e-06,
1135
+ "loss": 0.2455,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 0.28,
1140
+ "grad_norm": 4.5625,
1141
+ "learning_rate": 8.477688525913215e-06,
1142
+ "loss": 0.2369,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 0.28,
1147
+ "grad_norm": 6.15625,
1148
+ "learning_rate": 8.457352880252456e-06,
1149
+ "loss": 0.2176,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 0.28,
1154
+ "grad_norm": 4.78125,
1155
+ "learning_rate": 8.436907052258809e-06,
1156
+ "loss": 0.2447,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 0.29,
1161
+ "grad_norm": 5.53125,
1162
+ "learning_rate": 8.4163516935201e-06,
1163
+ "loss": 0.2366,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 0.29,
1168
+ "grad_norm": 6.03125,
1169
+ "learning_rate": 8.395687459114776e-06,
1170
+ "loss": 0.2467,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 0.29,
1175
+ "grad_norm": 4.5,
1176
+ "learning_rate": 8.374915007591053e-06,
1177
+ "loss": 0.2193,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 0.29,
1182
+ "grad_norm": 6.75,
1183
+ "learning_rate": 8.35403500094591e-06,
1184
+ "loss": 0.2238,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 0.29,
1189
+ "grad_norm": 4.71875,
1190
+ "learning_rate": 8.333048104604e-06,
1191
+ "loss": 0.2221,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 0.29,
1196
+ "grad_norm": 4.0625,
1197
+ "learning_rate": 8.311954987396444e-06,
1198
+ "loss": 0.2428,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 0.3,
1203
+ "grad_norm": 4.9375,
1204
+ "learning_rate": 8.290756321539514e-06,
1205
+ "loss": 0.2244,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 0.3,
1210
+ "grad_norm": 4.75,
1211
+ "learning_rate": 8.269452782613208e-06,
1212
+ "loss": 0.2114,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 0.3,
1217
+ "grad_norm": 6.125,
1218
+ "learning_rate": 8.248045049539726e-06,
1219
+ "loss": 0.2331,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 0.3,
1224
+ "grad_norm": 4.71875,
1225
+ "learning_rate": 8.226533804561828e-06,
1226
+ "loss": 0.2488,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 0.3,
1231
+ "grad_norm": 5.34375,
1232
+ "learning_rate": 8.20491973322109e-06,
1233
+ "loss": 0.2438,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 0.31,
1238
+ "grad_norm": 4.40625,
1239
+ "learning_rate": 8.183203524336067e-06,
1240
+ "loss": 0.2414,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 0.31,
1245
+ "grad_norm": 5.125,
1246
+ "learning_rate": 8.161385869980332e-06,
1247
+ "loss": 0.2205,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 0.31,
1252
+ "grad_norm": 5.71875,
1253
+ "learning_rate": 8.139467465460417e-06,
1254
+ "loss": 0.225,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 0.31,
1259
+ "grad_norm": 5.0625,
1260
+ "learning_rate": 8.117449009293668e-06,
1261
+ "loss": 0.232,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 0.31,
1266
+ "grad_norm": 4.15625,
1267
+ "learning_rate": 8.095331203185969e-06,
1268
+ "loss": 0.2099,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 0.31,
1273
+ "grad_norm": 5.53125,
1274
+ "learning_rate": 8.073114752009388e-06,
1275
+ "loss": 0.23,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 0.32,
1280
+ "grad_norm": 6.0625,
1281
+ "learning_rate": 8.050800363779711e-06,
1282
+ "loss": 0.2312,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 0.32,
1287
+ "grad_norm": 5.1875,
1288
+ "learning_rate": 8.028388749633882e-06,
1289
+ "loss": 0.2315,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 0.32,
1294
+ "grad_norm": 6.0,
1295
+ "learning_rate": 8.005880623807332e-06,
1296
+ "loss": 0.2432,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 0.32,
1301
+ "grad_norm": 4.5625,
1302
+ "learning_rate": 7.98327670361122e-06,
1303
+ "loss": 0.2396,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 0.32,
1308
+ "grad_norm": 4.9375,
1309
+ "learning_rate": 7.960577709409585e-06,
1310
+ "loss": 0.2241,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 0.32,
1315
+ "grad_norm": 5.21875,
1316
+ "learning_rate": 7.937784364596364e-06,
1317
+ "loss": 0.2601,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 0.33,
1322
+ "grad_norm": 5.25,
1323
+ "learning_rate": 7.914897395572362e-06,
1324
+ "loss": 0.2221,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 0.33,
1329
+ "grad_norm": 4.53125,
1330
+ "learning_rate": 7.891917531722088e-06,
1331
+ "loss": 0.2263,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 0.33,
1336
+ "grad_norm": 5.0625,
1337
+ "learning_rate": 7.86884550539052e-06,
1338
+ "loss": 0.2255,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 0.33,
1343
+ "grad_norm": 4.9375,
1344
+ "learning_rate": 7.845682051859757e-06,
1345
+ "loss": 0.2243,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 0.33,
1350
+ "grad_norm": 5.625,
1351
+ "learning_rate": 7.822427909325592e-06,
1352
+ "loss": 0.2369,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 0.33,
1357
+ "grad_norm": 4.1875,
1358
+ "learning_rate": 7.79908381887398e-06,
1359
+ "loss": 0.2174,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 0.34,
1364
+ "grad_norm": 4.4375,
1365
+ "learning_rate": 7.775650524457431e-06,
1366
+ "loss": 0.2596,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 0.34,
1371
+ "grad_norm": 5.625,
1372
+ "learning_rate": 7.752128772871292e-06,
1373
+ "loss": 0.226,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 0.34,
1378
+ "grad_norm": 4.9375,
1379
+ "learning_rate": 7.728519313729953e-06,
1380
+ "loss": 0.2111,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 0.34,
1385
+ "grad_norm": 6.84375,
1386
+ "learning_rate": 7.70482289944295e-06,
1387
+ "loss": 0.2247,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 0.34,
1392
+ "grad_norm": 4.5,
1393
+ "learning_rate": 7.681040285190995e-06,
1394
+ "loss": 0.2218,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 0.35,
1399
+ "grad_norm": 4.375,
1400
+ "learning_rate": 7.657172228901906e-06,
1401
+ "loss": 0.2374,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 0.35,
1406
+ "grad_norm": 5.59375,
1407
+ "learning_rate": 7.63321949122645e-06,
1408
+ "loss": 0.2245,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 0.35,
1413
+ "grad_norm": 4.875,
1414
+ "learning_rate": 7.609182835514104e-06,
1415
+ "loss": 0.2428,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 0.35,
1420
+ "grad_norm": 5.15625,
1421
+ "learning_rate": 7.58506302778873e-06,
1422
+ "loss": 0.245,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 0.35,
1427
+ "grad_norm": 6.40625,
1428
+ "learning_rate": 7.5608608367241595e-06,
1429
+ "loss": 0.2212,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 0.35,
1434
+ "grad_norm": 5.875,
1435
+ "learning_rate": 7.536577033619698e-06,
1436
+ "loss": 0.2383,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 0.36,
1441
+ "grad_norm": 5.0,
1442
+ "learning_rate": 7.5122123923755396e-06,
1443
+ "loss": 0.2065,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 0.36,
1448
+ "grad_norm": 5.09375,
1449
+ "learning_rate": 7.487767689468114e-06,
1450
+ "loss": 0.2437,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 0.36,
1455
+ "grad_norm": 4.25,
1456
+ "learning_rate": 7.463243703925333e-06,
1457
+ "loss": 0.2242,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 0.36,
1462
+ "grad_norm": 5.21875,
1463
+ "learning_rate": 7.438641217301763e-06,
1464
+ "loss": 0.2209,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 0.36,
1469
+ "grad_norm": 5.0,
1470
+ "learning_rate": 7.413961013653725e-06,
1471
+ "loss": 0.2331,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 0.36,
1476
+ "grad_norm": 5.1875,
1477
+ "learning_rate": 7.3892038795142995e-06,
1478
+ "loss": 0.2316,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 0.37,
1483
+ "grad_norm": 4.125,
1484
+ "learning_rate": 7.3643706038682625e-06,
1485
+ "loss": 0.2223,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 0.37,
1490
+ "grad_norm": 7.15625,
1491
+ "learning_rate": 7.339461978126947e-06,
1492
+ "loss": 0.2353,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 0.37,
1497
+ "grad_norm": 3.90625,
1498
+ "learning_rate": 7.314478796103015e-06,
1499
+ "loss": 0.2419,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 0.37,
1504
+ "grad_norm": 4.5625,
1505
+ "learning_rate": 7.289421853985162e-06,
1506
+ "loss": 0.2325,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 0.37,
1511
+ "grad_norm": 4.96875,
1512
+ "learning_rate": 7.2642919503127405e-06,
1513
+ "loss": 0.2296,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 0.37,
1518
+ "grad_norm": 4.90625,
1519
+ "learning_rate": 7.239089885950317e-06,
1520
+ "loss": 0.2496,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 0.38,
1525
+ "grad_norm": 4.75,
1526
+ "learning_rate": 7.213816464062144e-06,
1527
+ "loss": 0.2338,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 0.38,
1532
+ "grad_norm": 4.1875,
1533
+ "learning_rate": 7.188472490086569e-06,
1534
+ "loss": 0.2062,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 0.38,
1539
+ "grad_norm": 5.1875,
1540
+ "learning_rate": 7.16305877171036e-06,
1541
+ "loss": 0.2374,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 0.38,
1546
+ "grad_norm": 4.53125,
1547
+ "learning_rate": 7.137576118842969e-06,
1548
+ "loss": 0.227,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 0.38,
1553
+ "grad_norm": 4.03125,
1554
+ "learning_rate": 7.112025343590721e-06,
1555
+ "loss": 0.2266,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 0.39,
1560
+ "grad_norm": 4.9375,
1561
+ "learning_rate": 7.0864072602309335e-06,
1562
+ "loss": 0.2432,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 0.39,
1567
+ "grad_norm": 5.0625,
1568
+ "learning_rate": 7.060722685185961e-06,
1569
+ "loss": 0.2328,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 0.39,
1574
+ "grad_norm": 5.15625,
1575
+ "learning_rate": 7.034972436997185e-06,
1576
+ "loss": 0.2156,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 0.39,
1581
+ "grad_norm": 4.9375,
1582
+ "learning_rate": 7.009157336298924e-06,
1583
+ "loss": 0.2422,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 0.39,
1588
+ "grad_norm": 4.6875,
1589
+ "learning_rate": 6.983278205792274e-06,
1590
+ "loss": 0.2234,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 0.39,
1595
+ "grad_norm": 5.28125,
1596
+ "learning_rate": 6.957335870218906e-06,
1597
+ "loss": 0.2126,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 0.4,
1602
+ "grad_norm": 5.125,
1603
+ "learning_rate": 6.931331156334759e-06,
1604
+ "loss": 0.2404,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 0.4,
1609
+ "grad_norm": 4.8125,
1610
+ "learning_rate": 6.905264892883722e-06,
1611
+ "loss": 0.2244,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 0.4,
1616
+ "grad_norm": 4.125,
1617
+ "learning_rate": 6.879137910571191e-06,
1618
+ "loss": 0.24,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 0.4,
1623
+ "grad_norm": 6.28125,
1624
+ "learning_rate": 6.852951042037622e-06,
1625
+ "loss": 0.2398,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 0.4,
1630
+ "grad_norm": 4.4375,
1631
+ "learning_rate": 6.8267051218319766e-06,
1632
+ "loss": 0.1964,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 0.4,
1637
+ "grad_norm": 6.0625,
1638
+ "learning_rate": 6.800400986385136e-06,
1639
+ "loss": 0.2456,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 0.41,
1644
+ "grad_norm": 4.03125,
1645
+ "learning_rate": 6.774039473983244e-06,
1646
+ "loss": 0.2122,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 0.41,
1651
+ "grad_norm": 5.875,
1652
+ "learning_rate": 6.747621424740986e-06,
1653
+ "loss": 0.2022,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 0.41,
1658
+ "grad_norm": 5.125,
1659
+ "learning_rate": 6.7211476805748254e-06,
1660
+ "loss": 0.2533,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 0.41,
1665
+ "grad_norm": 5.0,
1666
+ "learning_rate": 6.694619085176159e-06,
1667
+ "loss": 0.2399,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 0.41,
1672
+ "grad_norm": 5.65625,
1673
+ "learning_rate": 6.668036483984441e-06,
1674
+ "loss": 0.209,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 0.41,
1679
+ "grad_norm": 5.5,
1680
+ "learning_rate": 6.641400724160235e-06,
1681
+ "loss": 0.2116,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 0.42,
1686
+ "grad_norm": 5.5625,
1687
+ "learning_rate": 6.614712654558215e-06,
1688
+ "loss": 0.2246,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 0.42,
1693
+ "grad_norm": 8.6875,
1694
+ "learning_rate": 6.587973125700117e-06,
1695
+ "loss": 0.2353,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 0.42,
1700
+ "grad_norm": 4.15625,
1701
+ "learning_rate": 6.561182989747629e-06,
1702
+ "loss": 0.2245,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 0.42,
1707
+ "grad_norm": 5.65625,
1708
+ "learning_rate": 6.5343431004752375e-06,
1709
+ "loss": 0.2266,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 0.42,
1714
+ "grad_norm": 3.96875,
1715
+ "learning_rate": 6.507454313243016e-06,
1716
+ "loss": 0.2434,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 0.42,
1721
+ "grad_norm": 4.96875,
1722
+ "learning_rate": 6.480517484969366e-06,
1723
+ "loss": 0.2087,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 0.43,
1728
+ "grad_norm": 5.25,
1729
+ "learning_rate": 6.45353347410371e-06,
1730
+ "loss": 0.2161,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 0.43,
1735
+ "grad_norm": 4.71875,
1736
+ "learning_rate": 6.426503140599129e-06,
1737
+ "loss": 0.2437,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 0.43,
1742
+ "grad_norm": 4.25,
1743
+ "learning_rate": 6.399427345884964e-06,
1744
+ "loss": 0.2176,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 0.43,
1749
+ "grad_norm": 5.75,
1750
+ "learning_rate": 6.3723069528393535e-06,
1751
+ "loss": 0.233,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 0.43,
1756
+ "grad_norm": 4.34375,
1757
+ "learning_rate": 6.345142825761745e-06,
1758
+ "loss": 0.2262,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 0.44,
1763
+ "grad_norm": 4.9375,
1764
+ "learning_rate": 6.3179358303453386e-06,
1765
+ "loss": 0.2256,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 0.44,
1770
+ "grad_norm": 4.84375,
1771
+ "learning_rate": 6.290686833649513e-06,
1772
+ "loss": 0.2081,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 0.44,
1777
+ "grad_norm": 5.3125,
1778
+ "learning_rate": 6.263396704072177e-06,
1779
+ "loss": 0.2416,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 0.44,
1784
+ "grad_norm": 4.65625,
1785
+ "learning_rate": 6.236066311322111e-06,
1786
+ "loss": 0.2141,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 0.44,
1791
+ "grad_norm": 4.40625,
1792
+ "learning_rate": 6.208696526391235e-06,
1793
+ "loss": 0.222,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 0.44,
1798
+ "grad_norm": 5.96875,
1799
+ "learning_rate": 6.181288221526858e-06,
1800
+ "loss": 0.2375,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 0.45,
1805
+ "grad_norm": 5.5625,
1806
+ "learning_rate": 6.153842270203887e-06,
1807
+ "loss": 0.2115,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 0.45,
1812
+ "grad_norm": 5.03125,
1813
+ "learning_rate": 6.126359547096975e-06,
1814
+ "loss": 0.2059,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 0.45,
1819
+ "grad_norm": 3.859375,
1820
+ "learning_rate": 6.098840928052663e-06,
1821
+ "loss": 0.2266,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 0.45,
1826
+ "grad_norm": 5.09375,
1827
+ "learning_rate": 6.0712872900614515e-06,
1828
+ "loss": 0.2311,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 0.45,
1833
+ "grad_norm": 5.875,
1834
+ "learning_rate": 6.043699511229864e-06,
1835
+ "loss": 0.2357,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 0.45,
1840
+ "grad_norm": 5.375,
1841
+ "learning_rate": 6.0160784707524566e-06,
1842
+ "loss": 0.2199,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 0.46,
1847
+ "grad_norm": 5.53125,
1848
+ "learning_rate": 5.988425048883799e-06,
1849
+ "loss": 0.2235,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 0.46,
1854
+ "grad_norm": 5.53125,
1855
+ "learning_rate": 5.960740126910426e-06,
1856
+ "loss": 0.2267,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 0.46,
1861
+ "grad_norm": 5.0,
1862
+ "learning_rate": 5.933024587122745e-06,
1863
+ "loss": 0.2168,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 0.46,
1868
+ "grad_norm": 4.0625,
1869
+ "learning_rate": 5.905279312786928e-06,
1870
+ "loss": 0.2118,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 0.46,
1875
+ "grad_norm": 5.375,
1876
+ "learning_rate": 5.877505188116749e-06,
1877
+ "loss": 0.2182,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 0.46,
1882
+ "grad_norm": 5.3125,
1883
+ "learning_rate": 5.84970309824542e-06,
1884
+ "loss": 0.2284,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 0.47,
1889
+ "grad_norm": 4.9375,
1890
+ "learning_rate": 5.821873929197371e-06,
1891
+ "loss": 0.2111,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 0.47,
1896
+ "grad_norm": 4.15625,
1897
+ "learning_rate": 5.794018567860021e-06,
1898
+ "loss": 0.2238,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 0.47,
1903
+ "grad_norm": 4.5,
1904
+ "learning_rate": 5.766137901955511e-06,
1905
+ "loss": 0.2321,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 0.47,
1910
+ "grad_norm": 5.71875,
1911
+ "learning_rate": 5.738232820012407e-06,
1912
+ "loss": 0.2277,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 0.47,
1917
+ "grad_norm": 4.78125,
1918
+ "learning_rate": 5.7103042113373964e-06,
1919
+ "loss": 0.2242,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 0.48,
1924
+ "grad_norm": 5.65625,
1925
+ "learning_rate": 5.682352965986936e-06,
1926
+ "loss": 0.2096,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 0.48,
1931
+ "grad_norm": 4.96875,
1932
+ "learning_rate": 5.654379974738893e-06,
1933
+ "loss": 0.2043,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 0.48,
1938
+ "grad_norm": 6.6875,
1939
+ "learning_rate": 5.626386129064152e-06,
1940
+ "loss": 0.2083,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 0.48,
1945
+ "grad_norm": 4.78125,
1946
+ "learning_rate": 5.598372321098209e-06,
1947
+ "loss": 0.1889,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 0.48,
1952
+ "grad_norm": 4.75,
1953
+ "learning_rate": 5.570339443612734e-06,
1954
+ "loss": 0.2284,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 0.48,
1959
+ "grad_norm": 5.25,
1960
+ "learning_rate": 5.542288389987128e-06,
1961
+ "loss": 0.2106,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 0.49,
1966
+ "grad_norm": 4.96875,
1967
+ "learning_rate": 5.514220054180046e-06,
1968
+ "loss": 0.2405,
1969
+ "step": 2800
1970
+ },
1971
+ {
1972
+ "epoch": 0.49,
1973
+ "grad_norm": 4.9375,
1974
+ "learning_rate": 5.486135330700906e-06,
1975
+ "loss": 0.2166,
1976
+ "step": 2810
1977
+ },
1978
+ {
1979
+ "epoch": 0.49,
1980
+ "grad_norm": 6.9375,
1981
+ "learning_rate": 5.45803511458139e-06,
1982
+ "loss": 0.2198,
1983
+ "step": 2820
1984
+ },
1985
+ {
1986
+ "epoch": 0.49,
1987
+ "grad_norm": 5.4375,
1988
+ "learning_rate": 5.429920301346907e-06,
1989
+ "loss": 0.2462,
1990
+ "step": 2830
1991
+ },
1992
+ {
1993
+ "epoch": 0.49,
1994
+ "grad_norm": 4.21875,
1995
+ "learning_rate": 5.401791786988068e-06,
1996
+ "loss": 0.2134,
1997
+ "step": 2840
1998
+ },
1999
+ {
2000
+ "epoch": 0.49,
2001
+ "grad_norm": 5.8125,
2002
+ "learning_rate": 5.373650467932122e-06,
2003
+ "loss": 0.217,
2004
+ "step": 2850
2005
+ },
2006
+ {
2007
+ "epoch": 0.5,
2008
+ "grad_norm": 5.4375,
2009
+ "learning_rate": 5.34549724101439e-06,
2010
+ "loss": 0.2063,
2011
+ "step": 2860
2012
+ },
2013
+ {
2014
+ "epoch": 0.5,
2015
+ "grad_norm": 5.15625,
2016
+ "learning_rate": 5.3173330034496875e-06,
2017
+ "loss": 0.2393,
2018
+ "step": 2870
2019
+ },
2020
+ {
2021
+ "epoch": 0.5,
2022
+ "grad_norm": 4.8125,
2023
+ "learning_rate": 5.2891586528037255e-06,
2024
+ "loss": 0.2496,
2025
+ "step": 2880
2026
+ },
2027
+ {
2028
+ "epoch": 0.5,
2029
+ "grad_norm": 6.25,
2030
+ "learning_rate": 5.2609750869645085e-06,
2031
+ "loss": 0.226,
2032
+ "step": 2890
2033
+ },
2034
+ {
2035
+ "epoch": 0.5,
2036
+ "grad_norm": 4.28125,
2037
+ "learning_rate": 5.23278320411372e-06,
2038
+ "loss": 0.2199,
2039
+ "step": 2900
2040
+ },
2041
+ {
2042
+ "epoch": 0.5,
2043
+ "grad_norm": 5.5,
2044
+ "learning_rate": 5.204583902698101e-06,
2045
+ "loss": 0.2366,
2046
+ "step": 2910
2047
+ },
2048
+ {
2049
+ "epoch": 0.51,
2050
+ "grad_norm": 4.40625,
2051
+ "learning_rate": 5.176378081400813e-06,
2052
+ "loss": 0.2398,
2053
+ "step": 2920
2054
+ },
2055
+ {
2056
+ "epoch": 0.51,
2057
+ "grad_norm": 4.625,
2058
+ "learning_rate": 5.148166639112799e-06,
2059
+ "loss": 0.2296,
2060
+ "step": 2930
2061
+ },
2062
+ {
2063
+ "epoch": 0.51,
2064
+ "grad_norm": 4.46875,
2065
+ "learning_rate": 5.119950474904137e-06,
2066
+ "loss": 0.2049,
2067
+ "step": 2940
2068
+ },
2069
+ {
2070
+ "epoch": 0.51,
2071
+ "grad_norm": 4.71875,
2072
+ "learning_rate": 5.091730487995387e-06,
2073
+ "loss": 0.2451,
2074
+ "step": 2950
2075
+ },
2076
+ {
2077
+ "epoch": 0.51,
2078
+ "grad_norm": 5.09375,
2079
+ "learning_rate": 5.063507577728938e-06,
2080
+ "loss": 0.215,
2081
+ "step": 2960
2082
+ },
2083
+ {
2084
+ "epoch": 0.52,
2085
+ "grad_norm": 4.8125,
2086
+ "learning_rate": 5.035282643540338e-06,
2087
+ "loss": 0.2292,
2088
+ "step": 2970
2089
+ },
2090
+ {
2091
+ "epoch": 0.52,
2092
+ "grad_norm": 5.9375,
2093
+ "learning_rate": 5.007056584929642e-06,
2094
+ "loss": 0.2382,
2095
+ "step": 2980
2096
+ },
2097
+ {
2098
+ "epoch": 0.52,
2099
+ "grad_norm": 4.625,
2100
+ "learning_rate": 4.978830301432738e-06,
2101
+ "loss": 0.2292,
2102
+ "step": 2990
2103
+ },
2104
+ {
2105
+ "epoch": 0.52,
2106
+ "grad_norm": 4.34375,
2107
+ "learning_rate": 4.9506046925926725e-06,
2108
+ "loss": 0.207,
2109
+ "step": 3000
2110
+ },
2111
+ {
2112
+ "epoch": 0.52,
2113
+ "grad_norm": 5.40625,
2114
+ "learning_rate": 4.922380657931001e-06,
2115
+ "loss": 0.2277,
2116
+ "step": 3010
2117
+ },
2118
+ {
2119
+ "epoch": 0.52,
2120
+ "grad_norm": 5.3125,
2121
+ "learning_rate": 4.894159096919109e-06,
2122
+ "loss": 0.202,
2123
+ "step": 3020
2124
+ },
2125
+ {
2126
+ "epoch": 0.53,
2127
+ "grad_norm": 6.125,
2128
+ "learning_rate": 4.865940908949546e-06,
2129
+ "loss": 0.2271,
2130
+ "step": 3030
2131
+ },
2132
+ {
2133
+ "epoch": 0.53,
2134
+ "grad_norm": 5.96875,
2135
+ "learning_rate": 4.837726993307372e-06,
2136
+ "loss": 0.2405,
2137
+ "step": 3040
2138
+ },
2139
+ {
2140
+ "epoch": 0.53,
2141
+ "grad_norm": 6.09375,
2142
+ "learning_rate": 4.809518249141484e-06,
2143
+ "loss": 0.242,
2144
+ "step": 3050
2145
+ },
2146
+ {
2147
+ "epoch": 0.53,
2148
+ "grad_norm": 5.65625,
2149
+ "learning_rate": 4.7813155754359794e-06,
2150
+ "loss": 0.237,
2151
+ "step": 3060
2152
+ },
2153
+ {
2154
+ "epoch": 0.53,
2155
+ "grad_norm": 5.5625,
2156
+ "learning_rate": 4.753119870981486e-06,
2157
+ "loss": 0.2286,
2158
+ "step": 3070
2159
+ },
2160
+ {
2161
+ "epoch": 0.53,
2162
+ "grad_norm": 5.1875,
2163
+ "learning_rate": 4.724932034346536e-06,
2164
+ "loss": 0.2201,
2165
+ "step": 3080
2166
+ },
2167
+ {
2168
+ "epoch": 0.54,
2169
+ "grad_norm": 5.53125,
2170
+ "learning_rate": 4.69675296384892e-06,
2171
+ "loss": 0.2346,
2172
+ "step": 3090
2173
+ },
2174
+ {
2175
+ "epoch": 0.54,
2176
+ "grad_norm": 6.53125,
2177
+ "learning_rate": 4.66858355752706e-06,
2178
+ "loss": 0.2283,
2179
+ "step": 3100
2180
+ },
2181
+ {
2182
+ "epoch": 0.54,
2183
+ "grad_norm": 6.59375,
2184
+ "learning_rate": 4.640424713111389e-06,
2185
+ "loss": 0.2206,
2186
+ "step": 3110
2187
+ },
2188
+ {
2189
+ "epoch": 0.54,
2190
+ "grad_norm": 5.46875,
2191
+ "learning_rate": 4.612277327995746e-06,
2192
+ "loss": 0.2232,
2193
+ "step": 3120
2194
+ },
2195
+ {
2196
+ "epoch": 0.54,
2197
+ "grad_norm": 6.03125,
2198
+ "learning_rate": 4.584142299208773e-06,
2199
+ "loss": 0.2103,
2200
+ "step": 3130
2201
+ },
2202
+ {
2203
+ "epoch": 0.54,
2204
+ "grad_norm": 6.03125,
2205
+ "learning_rate": 4.556020523385326e-06,
2206
+ "loss": 0.2136,
2207
+ "step": 3140
2208
+ },
2209
+ {
2210
+ "epoch": 0.55,
2211
+ "grad_norm": 5.6875,
2212
+ "learning_rate": 4.527912896737907e-06,
2213
+ "loss": 0.2161,
2214
+ "step": 3150
2215
+ },
2216
+ {
2217
+ "epoch": 0.55,
2218
+ "grad_norm": 5.15625,
2219
+ "learning_rate": 4.499820315028092e-06,
2220
+ "loss": 0.2281,
2221
+ "step": 3160
2222
+ },
2223
+ {
2224
+ "epoch": 0.55,
2225
+ "grad_norm": 5.59375,
2226
+ "learning_rate": 4.471743673537994e-06,
2227
+ "loss": 0.2355,
2228
+ "step": 3170
2229
+ },
2230
+ {
2231
+ "epoch": 0.55,
2232
+ "grad_norm": 4.75,
2233
+ "learning_rate": 4.443683867041727e-06,
2234
+ "loss": 0.2465,
2235
+ "step": 3180
2236
+ },
2237
+ {
2238
+ "epoch": 0.55,
2239
+ "grad_norm": 4.40625,
2240
+ "learning_rate": 4.4156417897768906e-06,
2241
+ "loss": 0.2367,
2242
+ "step": 3190
2243
+ },
2244
+ {
2245
+ "epoch": 0.56,
2246
+ "grad_norm": 5.0,
2247
+ "learning_rate": 4.387618335416073e-06,
2248
+ "loss": 0.22,
2249
+ "step": 3200
2250
+ },
2251
+ {
2252
+ "epoch": 0.56,
2253
+ "grad_norm": 6.90625,
2254
+ "learning_rate": 4.3596143970383665e-06,
2255
+ "loss": 0.2312,
2256
+ "step": 3210
2257
+ },
2258
+ {
2259
+ "epoch": 0.56,
2260
+ "grad_norm": 4.0,
2261
+ "learning_rate": 4.331630867100909e-06,
2262
+ "loss": 0.218,
2263
+ "step": 3220
2264
+ },
2265
+ {
2266
+ "epoch": 0.56,
2267
+ "grad_norm": 5.5,
2268
+ "learning_rate": 4.303668637410444e-06,
2269
+ "loss": 0.2291,
2270
+ "step": 3230
2271
+ },
2272
+ {
2273
+ "epoch": 0.56,
2274
+ "grad_norm": 4.78125,
2275
+ "learning_rate": 4.2757285990948995e-06,
2276
+ "loss": 0.222,
2277
+ "step": 3240
2278
+ },
2279
+ {
2280
+ "epoch": 0.56,
2281
+ "grad_norm": 6.3125,
2282
+ "learning_rate": 4.247811642574981e-06,
2283
+ "loss": 0.2325,
2284
+ "step": 3250
2285
+ },
2286
+ {
2287
+ "epoch": 0.57,
2288
+ "grad_norm": 3.734375,
2289
+ "learning_rate": 4.219918657535806e-06,
2290
+ "loss": 0.2049,
2291
+ "step": 3260
2292
+ },
2293
+ {
2294
+ "epoch": 0.57,
2295
+ "grad_norm": 4.4375,
2296
+ "learning_rate": 4.192050532898543e-06,
2297
+ "loss": 0.2106,
2298
+ "step": 3270
2299
+ },
2300
+ {
2301
+ "epoch": 0.57,
2302
+ "grad_norm": 4.59375,
2303
+ "learning_rate": 4.1642081567920845e-06,
2304
+ "loss": 0.2282,
2305
+ "step": 3280
2306
+ },
2307
+ {
2308
+ "epoch": 0.57,
2309
+ "grad_norm": 5.21875,
2310
+ "learning_rate": 4.136392416524742e-06,
2311
+ "loss": 0.2258,
2312
+ "step": 3290
2313
+ },
2314
+ {
2315
+ "epoch": 0.57,
2316
+ "grad_norm": 5.375,
2317
+ "learning_rate": 4.108604198555974e-06,
2318
+ "loss": 0.2242,
2319
+ "step": 3300
2320
+ },
2321
+ {
2322
+ "epoch": 0.57,
2323
+ "grad_norm": 5.03125,
2324
+ "learning_rate": 4.080844388468129e-06,
2325
+ "loss": 0.2108,
2326
+ "step": 3310
2327
+ },
2328
+ {
2329
+ "epoch": 0.58,
2330
+ "grad_norm": 5.15625,
2331
+ "learning_rate": 4.053113870938224e-06,
2332
+ "loss": 0.2329,
2333
+ "step": 3320
2334
+ },
2335
+ {
2336
+ "epoch": 0.58,
2337
+ "grad_norm": 5.46875,
2338
+ "learning_rate": 4.025413529709751e-06,
2339
+ "loss": 0.2317,
2340
+ "step": 3330
2341
+ },
2342
+ {
2343
+ "epoch": 0.58,
2344
+ "grad_norm": 4.78125,
2345
+ "learning_rate": 3.9977442475645195e-06,
2346
+ "loss": 0.2388,
2347
+ "step": 3340
2348
+ },
2349
+ {
2350
+ "epoch": 0.58,
2351
+ "grad_norm": 4.65625,
2352
+ "learning_rate": 3.970106906294509e-06,
2353
+ "loss": 0.2381,
2354
+ "step": 3350
2355
+ },
2356
+ {
2357
+ "epoch": 0.58,
2358
+ "grad_norm": 5.5625,
2359
+ "learning_rate": 3.9425023866737824e-06,
2360
+ "loss": 0.2413,
2361
+ "step": 3360
2362
+ },
2363
+ {
2364
+ "epoch": 0.58,
2365
+ "grad_norm": 5.78125,
2366
+ "learning_rate": 3.91493156843041e-06,
2367
+ "loss": 0.244,
2368
+ "step": 3370
2369
+ },
2370
+ {
2371
+ "epoch": 0.59,
2372
+ "grad_norm": 4.40625,
2373
+ "learning_rate": 3.887395330218429e-06,
2374
+ "loss": 0.2283,
2375
+ "step": 3380
2376
+ },
2377
+ {
2378
+ "epoch": 0.59,
2379
+ "grad_norm": 5.5625,
2380
+ "learning_rate": 3.859894549589848e-06,
2381
+ "loss": 0.2417,
2382
+ "step": 3390
2383
+ },
2384
+ {
2385
+ "epoch": 0.59,
2386
+ "grad_norm": 5.0625,
2387
+ "learning_rate": 3.832430102966678e-06,
2388
+ "loss": 0.2257,
2389
+ "step": 3400
2390
+ },
2391
+ {
2392
+ "epoch": 0.59,
2393
+ "grad_norm": 4.46875,
2394
+ "learning_rate": 3.8050028656130046e-06,
2395
+ "loss": 0.212,
2396
+ "step": 3410
2397
+ },
2398
+ {
2399
+ "epoch": 0.59,
2400
+ "grad_norm": 6.3125,
2401
+ "learning_rate": 3.777613711607087e-06,
2402
+ "loss": 0.2303,
2403
+ "step": 3420
2404
+ },
2405
+ {
2406
+ "epoch": 0.59,
2407
+ "grad_norm": 3.75,
2408
+ "learning_rate": 3.7502635138135125e-06,
2409
+ "loss": 0.2265,
2410
+ "step": 3430
2411
+ },
2412
+ {
2413
+ "epoch": 0.6,
2414
+ "grad_norm": 4.59375,
2415
+ "learning_rate": 3.7229531438553666e-06,
2416
+ "loss": 0.2373,
2417
+ "step": 3440
2418
+ },
2419
+ {
2420
+ "epoch": 0.6,
2421
+ "grad_norm": 5.8125,
2422
+ "learning_rate": 3.6956834720864704e-06,
2423
+ "loss": 0.1923,
2424
+ "step": 3450
2425
+ },
2426
+ {
2427
+ "epoch": 0.6,
2428
+ "grad_norm": 5.875,
2429
+ "learning_rate": 3.668455367563625e-06,
2430
+ "loss": 0.2475,
2431
+ "step": 3460
2432
+ },
2433
+ {
2434
+ "epoch": 0.6,
2435
+ "grad_norm": 5.625,
2436
+ "learning_rate": 3.641269698018934e-06,
2437
+ "loss": 0.2263,
2438
+ "step": 3470
2439
+ },
2440
+ {
2441
+ "epoch": 0.6,
2442
+ "grad_norm": 6.03125,
2443
+ "learning_rate": 3.614127329832139e-06,
2444
+ "loss": 0.2138,
2445
+ "step": 3480
2446
+ },
2447
+ {
2448
+ "epoch": 0.61,
2449
+ "grad_norm": 5.40625,
2450
+ "learning_rate": 3.587029128003006e-06,
2451
+ "loss": 0.2131,
2452
+ "step": 3490
2453
+ },
2454
+ {
2455
+ "epoch": 0.61,
2456
+ "grad_norm": 5.875,
2457
+ "learning_rate": 3.5599759561237725e-06,
2458
+ "loss": 0.2279,
2459
+ "step": 3500
2460
+ },
2461
+ {
2462
+ "epoch": 0.61,
2463
+ "grad_norm": 6.4375,
2464
+ "learning_rate": 3.532968676351609e-06,
2465
+ "loss": 0.2145,
2466
+ "step": 3510
2467
+ },
2468
+ {
2469
+ "epoch": 0.61,
2470
+ "grad_norm": 5.0,
2471
+ "learning_rate": 3.5060081493811587e-06,
2472
+ "loss": 0.2032,
2473
+ "step": 3520
2474
+ },
2475
+ {
2476
+ "epoch": 0.61,
2477
+ "grad_norm": 4.53125,
2478
+ "learning_rate": 3.4790952344170927e-06,
2479
+ "loss": 0.2211,
2480
+ "step": 3530
2481
+ },
2482
+ {
2483
+ "epoch": 0.61,
2484
+ "grad_norm": 4.8125,
2485
+ "learning_rate": 3.4522307891467416e-06,
2486
+ "loss": 0.2276,
2487
+ "step": 3540
2488
+ },
2489
+ {
2490
+ "epoch": 0.62,
2491
+ "grad_norm": 6.5625,
2492
+ "learning_rate": 3.425415669712754e-06,
2493
+ "loss": 0.2297,
2494
+ "step": 3550
2495
+ },
2496
+ {
2497
+ "epoch": 0.62,
2498
+ "grad_norm": 5.03125,
2499
+ "learning_rate": 3.398650730685813e-06,
2500
+ "loss": 0.267,
2501
+ "step": 3560
2502
+ },
2503
+ {
2504
+ "epoch": 0.62,
2505
+ "grad_norm": 4.375,
2506
+ "learning_rate": 3.3719368250374036e-06,
2507
+ "loss": 0.2102,
2508
+ "step": 3570
2509
+ },
2510
+ {
2511
+ "epoch": 0.62,
2512
+ "grad_norm": 5.03125,
2513
+ "learning_rate": 3.345274804112629e-06,
2514
+ "loss": 0.2213,
2515
+ "step": 3580
2516
+ },
2517
+ {
2518
+ "epoch": 0.62,
2519
+ "grad_norm": 5.15625,
2520
+ "learning_rate": 3.318665517603083e-06,
2521
+ "loss": 0.2292,
2522
+ "step": 3590
2523
+ },
2524
+ {
2525
+ "epoch": 0.62,
2526
+ "grad_norm": 6.125,
2527
+ "learning_rate": 3.2921098135197565e-06,
2528
+ "loss": 0.2429,
2529
+ "step": 3600
2530
+ },
2531
+ {
2532
+ "epoch": 0.63,
2533
+ "grad_norm": 4.6875,
2534
+ "learning_rate": 3.265608538166034e-06,
2535
+ "loss": 0.238,
2536
+ "step": 3610
2537
+ },
2538
+ {
2539
+ "epoch": 0.63,
2540
+ "grad_norm": 5.0625,
2541
+ "learning_rate": 3.2391625361107033e-06,
2542
+ "loss": 0.2208,
2543
+ "step": 3620
2544
+ },
2545
+ {
2546
+ "epoch": 0.63,
2547
+ "grad_norm": 5.0,
2548
+ "learning_rate": 3.2127726501610558e-06,
2549
+ "loss": 0.2275,
2550
+ "step": 3630
2551
+ },
2552
+ {
2553
+ "epoch": 0.63,
2554
+ "grad_norm": 4.75,
2555
+ "learning_rate": 3.18643972133601e-06,
2556
+ "loss": 0.2318,
2557
+ "step": 3640
2558
+ },
2559
+ {
2560
+ "epoch": 0.63,
2561
+ "grad_norm": 4.34375,
2562
+ "learning_rate": 3.160164588839328e-06,
2563
+ "loss": 0.2387,
2564
+ "step": 3650
2565
+ },
2566
+ {
2567
+ "epoch": 0.63,
2568
+ "grad_norm": 4.59375,
2569
+ "learning_rate": 3.1339480900328555e-06,
2570
+ "loss": 0.2218,
2571
+ "step": 3660
2572
+ },
2573
+ {
2574
+ "epoch": 0.64,
2575
+ "grad_norm": 5.65625,
2576
+ "learning_rate": 3.107791060409845e-06,
2577
+ "loss": 0.2536,
2578
+ "step": 3670
2579
+ },
2580
+ {
2581
+ "epoch": 0.64,
2582
+ "grad_norm": 4.125,
2583
+ "learning_rate": 3.081694333568323e-06,
2584
+ "loss": 0.2054,
2585
+ "step": 3680
2586
+ },
2587
+ {
2588
+ "epoch": 0.64,
2589
+ "grad_norm": 4.625,
2590
+ "learning_rate": 3.0556587411845308e-06,
2591
+ "loss": 0.2293,
2592
+ "step": 3690
2593
+ },
2594
+ {
2595
+ "epoch": 0.64,
2596
+ "grad_norm": 6.28125,
2597
+ "learning_rate": 3.029685112986417e-06,
2598
+ "loss": 0.2412,
2599
+ "step": 3700
2600
+ },
2601
+ {
2602
+ "epoch": 0.64,
2603
+ "grad_norm": 5.1875,
2604
+ "learning_rate": 3.0037742767271894e-06,
2605
+ "loss": 0.2212,
2606
+ "step": 3710
2607
+ },
2608
+ {
2609
+ "epoch": 0.65,
2610
+ "grad_norm": 4.3125,
2611
+ "learning_rate": 2.9779270581589457e-06,
2612
+ "loss": 0.2571,
2613
+ "step": 3720
2614
+ },
2615
+ {
2616
+ "epoch": 0.65,
2617
+ "grad_norm": 5.84375,
2618
+ "learning_rate": 2.9521442810063516e-06,
2619
+ "loss": 0.2453,
2620
+ "step": 3730
2621
+ },
2622
+ {
2623
+ "epoch": 0.65,
2624
+ "grad_norm": 5.15625,
2625
+ "learning_rate": 2.926426766940384e-06,
2626
+ "loss": 0.2348,
2627
+ "step": 3740
2628
+ },
2629
+ {
2630
+ "epoch": 0.65,
2631
+ "grad_norm": 7.1875,
2632
+ "learning_rate": 2.9007753355521594e-06,
2633
+ "loss": 0.2415,
2634
+ "step": 3750
2635
+ },
2636
+ {
2637
+ "epoch": 0.65,
2638
+ "grad_norm": 4.21875,
2639
+ "learning_rate": 2.8751908043268024e-06,
2640
+ "loss": 0.2152,
2641
+ "step": 3760
2642
+ },
2643
+ {
2644
+ "epoch": 0.65,
2645
+ "grad_norm": 6.3125,
2646
+ "learning_rate": 2.8496739886173994e-06,
2647
+ "loss": 0.2244,
2648
+ "step": 3770
2649
+ },
2650
+ {
2651
+ "epoch": 0.66,
2652
+ "grad_norm": 4.53125,
2653
+ "learning_rate": 2.8242257016190065e-06,
2654
+ "loss": 0.189,
2655
+ "step": 3780
2656
+ },
2657
+ {
2658
+ "epoch": 0.66,
2659
+ "grad_norm": 4.5,
2660
+ "learning_rate": 2.7988467543427457e-06,
2661
+ "loss": 0.242,
2662
+ "step": 3790
2663
+ },
2664
+ {
2665
+ "epoch": 0.66,
2666
+ "grad_norm": 4.34375,
2667
+ "learning_rate": 2.773537955589951e-06,
2668
+ "loss": 0.2139,
2669
+ "step": 3800
2670
+ },
2671
+ {
2672
+ "epoch": 0.66,
2673
+ "grad_norm": 4.5,
2674
+ "learning_rate": 2.74830011192639e-06,
2675
+ "loss": 0.2279,
2676
+ "step": 3810
2677
+ },
2678
+ {
2679
+ "epoch": 0.66,
2680
+ "grad_norm": 6.78125,
2681
+ "learning_rate": 2.723134027656566e-06,
2682
+ "loss": 0.2365,
2683
+ "step": 3820
2684
+ },
2685
+ {
2686
+ "epoch": 0.66,
2687
+ "grad_norm": 5.21875,
2688
+ "learning_rate": 2.6980405047980853e-06,
2689
+ "loss": 0.2068,
2690
+ "step": 3830
2691
+ },
2692
+ {
2693
+ "epoch": 0.67,
2694
+ "grad_norm": 5.3125,
2695
+ "learning_rate": 2.6730203430560946e-06,
2696
+ "loss": 0.2333,
2697
+ "step": 3840
2698
+ },
2699
+ {
2700
+ "epoch": 0.67,
2701
+ "grad_norm": 4.78125,
2702
+ "learning_rate": 2.6480743397977914e-06,
2703
+ "loss": 0.2348,
2704
+ "step": 3850
2705
+ },
2706
+ {
2707
+ "epoch": 0.67,
2708
+ "grad_norm": 5.0,
2709
+ "learning_rate": 2.6232032900270254e-06,
2710
+ "loss": 0.2367,
2711
+ "step": 3860
2712
+ },
2713
+ {
2714
+ "epoch": 0.67,
2715
+ "grad_norm": 5.6875,
2716
+ "learning_rate": 2.5984079863589484e-06,
2717
+ "loss": 0.2418,
2718
+ "step": 3870
2719
+ },
2720
+ {
2721
+ "epoch": 0.67,
2722
+ "grad_norm": 5.84375,
2723
+ "learning_rate": 2.573689218994761e-06,
2724
+ "loss": 0.228,
2725
+ "step": 3880
2726
+ },
2727
+ {
2728
+ "epoch": 0.67,
2729
+ "grad_norm": 6.59375,
2730
+ "learning_rate": 2.549047775696533e-06,
2731
+ "loss": 0.2119,
2732
+ "step": 3890
2733
+ },
2734
+ {
2735
+ "epoch": 0.68,
2736
+ "grad_norm": 5.84375,
2737
+ "learning_rate": 2.524484441762091e-06,
2738
+ "loss": 0.2263,
2739
+ "step": 3900
2740
+ },
2741
+ {
2742
+ "epoch": 0.68,
2743
+ "grad_norm": 4.65625,
2744
+ "learning_rate": 2.5000000000000015e-06,
2745
+ "loss": 0.2285,
2746
+ "step": 3910
2747
+ },
2748
+ {
2749
+ "epoch": 0.68,
2750
+ "grad_norm": 5.84375,
2751
+ "learning_rate": 2.475595230704607e-06,
2752
+ "loss": 0.2283,
2753
+ "step": 3920
2754
+ },
2755
+ {
2756
+ "epoch": 0.68,
2757
+ "grad_norm": 4.40625,
2758
+ "learning_rate": 2.451270911631178e-06,
2759
+ "loss": 0.2086,
2760
+ "step": 3930
2761
+ },
2762
+ {
2763
+ "epoch": 0.68,
2764
+ "grad_norm": 5.71875,
2765
+ "learning_rate": 2.4270278179711167e-06,
2766
+ "loss": 0.2361,
2767
+ "step": 3940
2768
+ },
2769
+ {
2770
+ "epoch": 0.69,
2771
+ "grad_norm": 4.28125,
2772
+ "learning_rate": 2.402866722327248e-06,
2773
+ "loss": 0.2378,
2774
+ "step": 3950
2775
+ },
2776
+ {
2777
+ "epoch": 0.69,
2778
+ "grad_norm": 5.5,
2779
+ "learning_rate": 2.3787883946892087e-06,
2780
+ "loss": 0.2121,
2781
+ "step": 3960
2782
+ },
2783
+ {
2784
+ "epoch": 0.69,
2785
+ "grad_norm": 4.84375,
2786
+ "learning_rate": 2.3547936024089045e-06,
2787
+ "loss": 0.2041,
2788
+ "step": 3970
2789
+ },
2790
+ {
2791
+ "epoch": 0.69,
2792
+ "grad_norm": 4.59375,
2793
+ "learning_rate": 2.330883110176049e-06,
2794
+ "loss": 0.231,
2795
+ "step": 3980
2796
+ },
2797
+ {
2798
+ "epoch": 0.69,
2799
+ "grad_norm": 5.34375,
2800
+ "learning_rate": 2.3070576799937973e-06,
2801
+ "loss": 0.2292,
2802
+ "step": 3990
2803
+ },
2804
+ {
2805
+ "epoch": 0.69,
2806
+ "grad_norm": 5.0,
2807
+ "learning_rate": 2.2833180711544694e-06,
2808
+ "loss": 0.2365,
2809
+ "step": 4000
2810
+ },
2811
+ {
2812
+ "epoch": 0.7,
2813
+ "grad_norm": 5.625,
2814
+ "learning_rate": 2.2596650402153437e-06,
2815
+ "loss": 0.2317,
2816
+ "step": 4010
2817
+ },
2818
+ {
2819
+ "epoch": 0.7,
2820
+ "grad_norm": 4.0625,
2821
+ "learning_rate": 2.236099340974549e-06,
2822
+ "loss": 0.2263,
2823
+ "step": 4020
2824
+ },
2825
+ {
2826
+ "epoch": 0.7,
2827
+ "grad_norm": 6.09375,
2828
+ "learning_rate": 2.212621724447037e-06,
2829
+ "loss": 0.2354,
2830
+ "step": 4030
2831
+ },
2832
+ {
2833
+ "epoch": 0.7,
2834
+ "grad_norm": 5.28125,
2835
+ "learning_rate": 2.1892329388406586e-06,
2836
+ "loss": 0.2126,
2837
+ "step": 4040
2838
+ },
2839
+ {
2840
+ "epoch": 0.7,
2841
+ "grad_norm": 4.1875,
2842
+ "learning_rate": 2.1659337295323117e-06,
2843
+ "loss": 0.2137,
2844
+ "step": 4050
2845
+ },
2846
+ {
2847
+ "epoch": 0.7,
2848
+ "grad_norm": 5.0625,
2849
+ "learning_rate": 2.1427248390441845e-06,
2850
+ "loss": 0.2412,
2851
+ "step": 4060
2852
+ },
2853
+ {
2854
+ "epoch": 0.71,
2855
+ "grad_norm": 6.0625,
2856
+ "learning_rate": 2.1196070070200998e-06,
2857
+ "loss": 0.2199,
2858
+ "step": 4070
2859
+ },
2860
+ {
2861
+ "epoch": 0.71,
2862
+ "grad_norm": 5.0,
2863
+ "learning_rate": 2.096580970201941e-06,
2864
+ "loss": 0.2169,
2865
+ "step": 4080
2866
+ },
2867
+ {
2868
+ "epoch": 0.71,
2869
+ "grad_norm": 5.71875,
2870
+ "learning_rate": 2.073647462406166e-06,
2871
+ "loss": 0.2114,
2872
+ "step": 4090
2873
+ },
2874
+ {
2875
+ "epoch": 0.71,
2876
+ "grad_norm": 5.03125,
2877
+ "learning_rate": 2.0508072145004284e-06,
2878
+ "loss": 0.2496,
2879
+ "step": 4100
2880
+ },
2881
+ {
2882
+ "epoch": 0.71,
2883
+ "grad_norm": 4.90625,
2884
+ "learning_rate": 2.0280609543802853e-06,
2885
+ "loss": 0.2148,
2886
+ "step": 4110
2887
+ },
2888
+ {
2889
+ "epoch": 0.71,
2890
+ "grad_norm": 4.40625,
2891
+ "learning_rate": 2.005409406946e-06,
2892
+ "loss": 0.2104,
2893
+ "step": 4120
2894
+ },
2895
+ {
2896
+ "epoch": 0.72,
2897
+ "grad_norm": 5.59375,
2898
+ "learning_rate": 1.9828532940794325e-06,
2899
+ "loss": 0.2425,
2900
+ "step": 4130
2901
+ },
2902
+ {
2903
+ "epoch": 0.72,
2904
+ "grad_norm": 5.71875,
2905
+ "learning_rate": 1.9603933346210446e-06,
2906
+ "loss": 0.2243,
2907
+ "step": 4140
2908
+ },
2909
+ {
2910
+ "epoch": 0.72,
2911
+ "grad_norm": 4.6875,
2912
+ "learning_rate": 1.9380302443469857e-06,
2913
+ "loss": 0.2363,
2914
+ "step": 4150
2915
+ },
2916
+ {
2917
+ "epoch": 0.72,
2918
+ "grad_norm": 4.28125,
2919
+ "learning_rate": 1.9157647359462828e-06,
2920
+ "loss": 0.2003,
2921
+ "step": 4160
2922
+ },
2923
+ {
2924
+ "epoch": 0.72,
2925
+ "grad_norm": 5.25,
2926
+ "learning_rate": 1.8935975189981231e-06,
2927
+ "loss": 0.2121,
2928
+ "step": 4170
2929
+ },
2930
+ {
2931
+ "epoch": 0.72,
2932
+ "grad_norm": 5.78125,
2933
+ "learning_rate": 1.8715292999492502e-06,
2934
+ "loss": 0.2206,
2935
+ "step": 4180
2936
+ },
2937
+ {
2938
+ "epoch": 0.73,
2939
+ "grad_norm": 4.9375,
2940
+ "learning_rate": 1.8495607820914451e-06,
2941
+ "loss": 0.2289,
2942
+ "step": 4190
2943
+ },
2944
+ {
2945
+ "epoch": 0.73,
2946
+ "grad_norm": 5.84375,
2947
+ "learning_rate": 1.8276926655391086e-06,
2948
+ "loss": 0.2067,
2949
+ "step": 4200
2950
+ },
2951
+ {
2952
+ "epoch": 0.73,
2953
+ "grad_norm": 5.78125,
2954
+ "learning_rate": 1.8059256472069542e-06,
2955
+ "loss": 0.2078,
2956
+ "step": 4210
2957
+ },
2958
+ {
2959
+ "epoch": 0.73,
2960
+ "grad_norm": 4.8125,
2961
+ "learning_rate": 1.7842604207878006e-06,
2962
+ "loss": 0.228,
2963
+ "step": 4220
2964
+ },
2965
+ {
2966
+ "epoch": 0.73,
2967
+ "grad_norm": 4.78125,
2968
+ "learning_rate": 1.762697676730462e-06,
2969
+ "loss": 0.227,
2970
+ "step": 4230
2971
+ },
2972
+ {
2973
+ "epoch": 0.74,
2974
+ "grad_norm": 5.46875,
2975
+ "learning_rate": 1.7412381022177382e-06,
2976
+ "loss": 0.2123,
2977
+ "step": 4240
2978
+ },
2979
+ {
2980
+ "epoch": 0.74,
2981
+ "grad_norm": 4.59375,
2982
+ "learning_rate": 1.7198823811445254e-06,
2983
+ "loss": 0.2058,
2984
+ "step": 4250
2985
+ },
2986
+ {
2987
+ "epoch": 0.74,
2988
+ "grad_norm": 5.65625,
2989
+ "learning_rate": 1.6986311940960148e-06,
2990
+ "loss": 0.2157,
2991
+ "step": 4260
2992
+ },
2993
+ {
2994
+ "epoch": 0.74,
2995
+ "grad_norm": 4.9375,
2996
+ "learning_rate": 1.6774852183260005e-06,
2997
+ "loss": 0.2485,
2998
+ "step": 4270
2999
+ },
3000
+ {
3001
+ "epoch": 0.74,
3002
+ "grad_norm": 5.03125,
3003
+ "learning_rate": 1.6564451277353045e-06,
3004
+ "loss": 0.2293,
3005
+ "step": 4280
3006
+ },
3007
+ {
3008
+ "epoch": 0.74,
3009
+ "grad_norm": 4.75,
3010
+ "learning_rate": 1.6355115928502936e-06,
3011
+ "loss": 0.2246,
3012
+ "step": 4290
3013
+ },
3014
+ {
3015
+ "epoch": 0.75,
3016
+ "grad_norm": 6.375,
3017
+ "learning_rate": 1.6146852808015133e-06,
3018
+ "loss": 0.245,
3019
+ "step": 4300
3020
+ },
3021
+ {
3022
+ "epoch": 0.75,
3023
+ "grad_norm": 7.21875,
3024
+ "learning_rate": 1.5939668553024234e-06,
3025
+ "loss": 0.2275,
3026
+ "step": 4310
3027
+ },
3028
+ {
3029
+ "epoch": 0.75,
3030
+ "grad_norm": 4.625,
3031
+ "learning_rate": 1.5733569766282493e-06,
3032
+ "loss": 0.2254,
3033
+ "step": 4320
3034
+ },
3035
+ {
3036
+ "epoch": 0.75,
3037
+ "grad_norm": 5.21875,
3038
+ "learning_rate": 1.5528563015949421e-06,
3039
+ "loss": 0.211,
3040
+ "step": 4330
3041
+ },
3042
+ {
3043
+ "epoch": 0.75,
3044
+ "grad_norm": 4.65625,
3045
+ "learning_rate": 1.5324654835382386e-06,
3046
+ "loss": 0.2246,
3047
+ "step": 4340
3048
+ },
3049
+ {
3050
+ "epoch": 0.75,
3051
+ "grad_norm": 5.625,
3052
+ "learning_rate": 1.5121851722928493e-06,
3053
+ "loss": 0.2294,
3054
+ "step": 4350
3055
+ },
3056
+ {
3057
+ "epoch": 0.76,
3058
+ "grad_norm": 4.8125,
3059
+ "learning_rate": 1.4920160141717433e-06,
3060
+ "loss": 0.2408,
3061
+ "step": 4360
3062
+ },
3063
+ {
3064
+ "epoch": 0.76,
3065
+ "grad_norm": 5.1875,
3066
+ "learning_rate": 1.4719586519455536e-06,
3067
+ "loss": 0.2272,
3068
+ "step": 4370
3069
+ },
3070
+ {
3071
+ "epoch": 0.76,
3072
+ "grad_norm": 6.125,
3073
+ "learning_rate": 1.4520137248220866e-06,
3074
+ "loss": 0.243,
3075
+ "step": 4380
3076
+ },
3077
+ {
3078
+ "epoch": 0.76,
3079
+ "grad_norm": 5.90625,
3080
+ "learning_rate": 1.432181868425961e-06,
3081
+ "loss": 0.2272,
3082
+ "step": 4390
3083
+ },
3084
+ {
3085
+ "epoch": 0.76,
3086
+ "grad_norm": 5.03125,
3087
+ "learning_rate": 1.4124637147783431e-06,
3088
+ "loss": 0.2312,
3089
+ "step": 4400
3090
+ },
3091
+ {
3092
+ "epoch": 0.76,
3093
+ "grad_norm": 4.125,
3094
+ "learning_rate": 1.392859892276812e-06,
3095
+ "loss": 0.2263,
3096
+ "step": 4410
3097
+ },
3098
+ {
3099
+ "epoch": 0.77,
3100
+ "grad_norm": 5.5,
3101
+ "learning_rate": 1.373371025675323e-06,
3102
+ "loss": 0.2136,
3103
+ "step": 4420
3104
+ },
3105
+ {
3106
+ "epoch": 0.77,
3107
+ "grad_norm": 5.8125,
3108
+ "learning_rate": 1.3539977360643054e-06,
3109
+ "loss": 0.2462,
3110
+ "step": 4430
3111
+ },
3112
+ {
3113
+ "epoch": 0.77,
3114
+ "grad_norm": 5.625,
3115
+ "learning_rate": 1.3347406408508695e-06,
3116
+ "loss": 0.2344,
3117
+ "step": 4440
3118
+ },
3119
+ {
3120
+ "epoch": 0.77,
3121
+ "grad_norm": 5.53125,
3122
+ "learning_rate": 1.3156003537391248e-06,
3123
+ "loss": 0.2465,
3124
+ "step": 4450
3125
+ },
3126
+ {
3127
+ "epoch": 0.77,
3128
+ "grad_norm": 5.40625,
3129
+ "learning_rate": 1.2965774847106273e-06,
3130
+ "loss": 0.2042,
3131
+ "step": 4460
3132
+ },
3133
+ {
3134
+ "epoch": 0.78,
3135
+ "grad_norm": 5.1875,
3136
+ "learning_rate": 1.277672640004936e-06,
3137
+ "loss": 0.2283,
3138
+ "step": 4470
3139
+ },
3140
+ {
3141
+ "epoch": 0.78,
3142
+ "grad_norm": 6.375,
3143
+ "learning_rate": 1.2588864221002978e-06,
3144
+ "loss": 0.2228,
3145
+ "step": 4480
3146
+ },
3147
+ {
3148
+ "epoch": 0.78,
3149
+ "grad_norm": 4.65625,
3150
+ "learning_rate": 1.2402194296944364e-06,
3151
+ "loss": 0.2188,
3152
+ "step": 4490
3153
+ },
3154
+ {
3155
+ "epoch": 0.78,
3156
+ "grad_norm": 4.71875,
3157
+ "learning_rate": 1.2216722576854861e-06,
3158
+ "loss": 0.2232,
3159
+ "step": 4500
3160
+ },
3161
+ {
3162
+ "epoch": 0.78,
3163
+ "grad_norm": 5.09375,
3164
+ "learning_rate": 1.203245497153026e-06,
3165
+ "loss": 0.2312,
3166
+ "step": 4510
3167
+ },
3168
+ {
3169
+ "epoch": 0.78,
3170
+ "grad_norm": 4.21875,
3171
+ "learning_rate": 1.18493973533924e-06,
3172
+ "loss": 0.247,
3173
+ "step": 4520
3174
+ },
3175
+ {
3176
+ "epoch": 0.79,
3177
+ "grad_norm": 5.375,
3178
+ "learning_rate": 1.1667555556302097e-06,
3179
+ "loss": 0.2251,
3180
+ "step": 4530
3181
+ },
3182
+ {
3183
+ "epoch": 0.79,
3184
+ "grad_norm": 5.34375,
3185
+ "learning_rate": 1.1486935375373127e-06,
3186
+ "loss": 0.2329,
3187
+ "step": 4540
3188
+ },
3189
+ {
3190
+ "epoch": 0.79,
3191
+ "grad_norm": 4.75,
3192
+ "learning_rate": 1.130754256678766e-06,
3193
+ "loss": 0.2178,
3194
+ "step": 4550
3195
+ },
3196
+ {
3197
+ "epoch": 0.79,
3198
+ "grad_norm": 4.96875,
3199
+ "learning_rate": 1.1129382847612708e-06,
3200
+ "loss": 0.234,
3201
+ "step": 4560
3202
+ },
3203
+ {
3204
+ "epoch": 0.79,
3205
+ "grad_norm": 4.78125,
3206
+ "learning_rate": 1.0952461895617983e-06,
3207
+ "loss": 0.2456,
3208
+ "step": 4570
3209
+ },
3210
+ {
3211
+ "epoch": 0.79,
3212
+ "grad_norm": 5.03125,
3213
+ "learning_rate": 1.0776785349094975e-06,
3214
+ "loss": 0.2266,
3215
+ "step": 4580
3216
+ },
3217
+ {
3218
+ "epoch": 0.8,
3219
+ "grad_norm": 4.71875,
3220
+ "learning_rate": 1.060235880667717e-06,
3221
+ "loss": 0.235,
3222
+ "step": 4590
3223
+ },
3224
+ {
3225
+ "epoch": 0.8,
3226
+ "grad_norm": 6.8125,
3227
+ "learning_rate": 1.0429187827161746e-06,
3228
+ "loss": 0.2184,
3229
+ "step": 4600
3230
+ },
3231
+ {
3232
+ "epoch": 0.8,
3233
+ "grad_norm": 4.4375,
3234
+ "learning_rate": 1.0257277929332332e-06,
3235
+ "loss": 0.2334,
3236
+ "step": 4610
3237
+ },
3238
+ {
3239
+ "epoch": 0.8,
3240
+ "grad_norm": 5.09375,
3241
+ "learning_rate": 1.0086634591783196e-06,
3242
+ "loss": 0.2412,
3243
+ "step": 4620
3244
+ },
3245
+ {
3246
+ "epoch": 0.8,
3247
+ "grad_norm": 6.5,
3248
+ "learning_rate": 9.917263252744553e-07,
3249
+ "loss": 0.1987,
3250
+ "step": 4630
3251
+ },
3252
+ {
3253
+ "epoch": 0.8,
3254
+ "grad_norm": 5.0625,
3255
+ "learning_rate": 9.749169309909385e-07,
3256
+ "loss": 0.2434,
3257
+ "step": 4640
3258
+ },
3259
+ {
3260
+ "epoch": 0.81,
3261
+ "grad_norm": 7.0625,
3262
+ "learning_rate": 9.58235812026128e-07,
3263
+ "loss": 0.2253,
3264
+ "step": 4650
3265
+ },
3266
+ {
3267
+ "epoch": 0.81,
3268
+ "grad_norm": 5.625,
3269
+ "learning_rate": 9.416834999903862e-07,
3270
+ "loss": 0.2238,
3271
+ "step": 4660
3272
+ },
3273
+ {
3274
+ "epoch": 0.81,
3275
+ "grad_norm": 4.15625,
3276
+ "learning_rate": 9.252605223891209e-07,
3277
+ "loss": 0.2068,
3278
+ "step": 4670
3279
+ },
3280
+ {
3281
+ "epoch": 0.81,
3282
+ "grad_norm": 5.09375,
3283
+ "learning_rate": 9.08967402605988e-07,
3284
+ "loss": 0.2214,
3285
+ "step": 4680
3286
+ },
3287
+ {
3288
+ "epoch": 0.81,
3289
+ "grad_norm": 5.375,
3290
+ "learning_rate": 8.928046598862066e-07,
3291
+ "loss": 0.246,
3292
+ "step": 4690
3293
+ },
3294
+ {
3295
+ "epoch": 0.82,
3296
+ "grad_norm": 4.75,
3297
+ "learning_rate": 8.767728093200061e-07,
3298
+ "loss": 0.2271,
3299
+ "step": 4700
3300
+ },
3301
+ {
3302
+ "epoch": 0.82,
3303
+ "grad_norm": 5.25,
3304
+ "learning_rate": 8.6087236182622e-07,
3305
+ "loss": 0.2262,
3306
+ "step": 4710
3307
+ },
3308
+ {
3309
+ "epoch": 0.82,
3310
+ "grad_norm": 5.03125,
3311
+ "learning_rate": 8.451038241359994e-07,
3312
+ "loss": 0.2265,
3313
+ "step": 4720
3314
+ },
3315
+ {
3316
+ "epoch": 0.82,
3317
+ "grad_norm": 4.65625,
3318
+ "learning_rate": 8.294676987766587e-07,
3319
+ "loss": 0.2048,
3320
+ "step": 4730
3321
+ },
3322
+ {
3323
+ "epoch": 0.82,
3324
+ "grad_norm": 4.71875,
3325
+ "learning_rate": 8.139644840556704e-07,
3326
+ "loss": 0.2055,
3327
+ "step": 4740
3328
+ },
3329
+ {
3330
+ "epoch": 0.82,
3331
+ "grad_norm": 5.1875,
3332
+ "learning_rate": 7.985946740447792e-07,
3333
+ "loss": 0.2137,
3334
+ "step": 4750
3335
+ },
3336
+ {
3337
+ "epoch": 0.83,
3338
+ "grad_norm": 4.96875,
3339
+ "learning_rate": 7.833587585642527e-07,
3340
+ "loss": 0.2166,
3341
+ "step": 4760
3342
+ },
3343
+ {
3344
+ "epoch": 0.83,
3345
+ "grad_norm": 5.0625,
3346
+ "learning_rate": 7.682572231672813e-07,
3347
+ "loss": 0.2296,
3348
+ "step": 4770
3349
+ },
3350
+ {
3351
+ "epoch": 0.83,
3352
+ "grad_norm": 4.90625,
3353
+ "learning_rate": 7.532905491244924e-07,
3354
+ "loss": 0.2137,
3355
+ "step": 4780
3356
+ },
3357
+ {
3358
+ "epoch": 0.83,
3359
+ "grad_norm": 5.21875,
3360
+ "learning_rate": 7.384592134086233e-07,
3361
+ "loss": 0.2176,
3362
+ "step": 4790
3363
+ },
3364
+ {
3365
+ "epoch": 0.83,
3366
+ "grad_norm": 4.5,
3367
+ "learning_rate": 7.237636886793159e-07,
3368
+ "loss": 0.1989,
3369
+ "step": 4800
3370
+ },
3371
+ {
3372
+ "epoch": 0.83,
3373
+ "grad_norm": 4.21875,
3374
+ "learning_rate": 7.092044432680489e-07,
3375
+ "loss": 0.2245,
3376
+ "step": 4810
3377
+ },
3378
+ {
3379
+ "epoch": 0.84,
3380
+ "grad_norm": 4.625,
3381
+ "learning_rate": 6.947819411632223e-07,
3382
+ "loss": 0.2094,
3383
+ "step": 4820
3384
+ },
3385
+ {
3386
+ "epoch": 0.84,
3387
+ "grad_norm": 4.03125,
3388
+ "learning_rate": 6.804966419953641e-07,
3389
+ "loss": 0.2278,
3390
+ "step": 4830
3391
+ },
3392
+ {
3393
+ "epoch": 0.84,
3394
+ "grad_norm": 4.6875,
3395
+ "learning_rate": 6.663490010224811e-07,
3396
+ "loss": 0.221,
3397
+ "step": 4840
3398
+ },
3399
+ {
3400
+ "epoch": 0.84,
3401
+ "grad_norm": 4.5,
3402
+ "learning_rate": 6.523394691155566e-07,
3403
+ "loss": 0.2334,
3404
+ "step": 4850
3405
+ },
3406
+ {
3407
+ "epoch": 0.84,
3408
+ "grad_norm": 5.65625,
3409
+ "learning_rate": 6.384684927441764e-07,
3410
+ "loss": 0.2319,
3411
+ "step": 4860
3412
+ },
3413
+ {
3414
+ "epoch": 0.84,
3415
+ "grad_norm": 4.78125,
3416
+ "learning_rate": 6.247365139623007e-07,
3417
+ "loss": 0.2178,
3418
+ "step": 4870
3419
+ },
3420
+ {
3421
+ "epoch": 0.85,
3422
+ "grad_norm": 6.84375,
3423
+ "learning_rate": 6.111439703941796e-07,
3424
+ "loss": 0.2234,
3425
+ "step": 4880
3426
+ },
3427
+ {
3428
+ "epoch": 0.85,
3429
+ "grad_norm": 5.875,
3430
+ "learning_rate": 5.976912952204017e-07,
3431
+ "loss": 0.2498,
3432
+ "step": 4890
3433
+ },
3434
+ {
3435
+ "epoch": 0.85,
3436
+ "grad_norm": 4.875,
3437
+ "learning_rate": 5.84378917164094e-07,
3438
+ "loss": 0.218,
3439
+ "step": 4900
3440
+ },
3441
+ {
3442
+ "epoch": 0.85,
3443
+ "grad_norm": 5.3125,
3444
+ "learning_rate": 5.712072604772539e-07,
3445
+ "loss": 0.2444,
3446
+ "step": 4910
3447
+ },
3448
+ {
3449
+ "epoch": 0.85,
3450
+ "grad_norm": 5.1875,
3451
+ "learning_rate": 5.581767449272346e-07,
3452
+ "loss": 0.2188,
3453
+ "step": 4920
3454
+ },
3455
+ {
3456
+ "epoch": 0.86,
3457
+ "grad_norm": 6.0,
3458
+ "learning_rate": 5.452877857833611e-07,
3459
+ "loss": 0.2201,
3460
+ "step": 4930
3461
+ },
3462
+ {
3463
+ "epoch": 0.86,
3464
+ "grad_norm": 5.46875,
3465
+ "learning_rate": 5.32540793803703e-07,
3466
+ "loss": 0.2227,
3467
+ "step": 4940
3468
+ },
3469
+ {
3470
+ "epoch": 0.86,
3471
+ "grad_norm": 4.8125,
3472
+ "learning_rate": 5.199361752219756e-07,
3473
+ "loss": 0.2306,
3474
+ "step": 4950
3475
+ },
3476
+ {
3477
+ "epoch": 0.86,
3478
+ "grad_norm": 4.875,
3479
+ "learning_rate": 5.074743317346009e-07,
3480
+ "loss": 0.2116,
3481
+ "step": 4960
3482
+ },
3483
+ {
3484
+ "epoch": 0.86,
3485
+ "grad_norm": 4.125,
3486
+ "learning_rate": 4.951556604879049e-07,
3487
+ "loss": 0.2283,
3488
+ "step": 4970
3489
+ },
3490
+ {
3491
+ "epoch": 0.86,
3492
+ "grad_norm": 4.21875,
3493
+ "learning_rate": 4.829805540654547e-07,
3494
+ "loss": 0.201,
3495
+ "step": 4980
3496
+ },
3497
+ {
3498
+ "epoch": 0.87,
3499
+ "grad_norm": 4.84375,
3500
+ "learning_rate": 4.7094940047555713e-07,
3501
+ "loss": 0.2241,
3502
+ "step": 4990
3503
+ },
3504
+ {
3505
+ "epoch": 0.87,
3506
+ "grad_norm": 4.03125,
3507
+ "learning_rate": 4.590625831388834e-07,
3508
+ "loss": 0.2211,
3509
+ "step": 5000
3510
+ },
3511
+ {
3512
+ "epoch": 0.87,
3513
+ "grad_norm": 5.6875,
3514
+ "learning_rate": 4.4732048087625877e-07,
3515
+ "loss": 0.2482,
3516
+ "step": 5010
3517
+ },
3518
+ {
3519
+ "epoch": 0.87,
3520
+ "grad_norm": 4.53125,
3521
+ "learning_rate": 4.357234678965827e-07,
3522
+ "loss": 0.2288,
3523
+ "step": 5020
3524
+ },
3525
+ {
3526
+ "epoch": 0.87,
3527
+ "grad_norm": 5.34375,
3528
+ "learning_rate": 4.242719137849077e-07,
3529
+ "loss": 0.2337,
3530
+ "step": 5030
3531
+ },
3532
+ {
3533
+ "epoch": 0.87,
3534
+ "grad_norm": 5.65625,
3535
+ "learning_rate": 4.129661834906601e-07,
3536
+ "loss": 0.2058,
3537
+ "step": 5040
3538
+ },
3539
+ {
3540
+ "epoch": 0.88,
3541
+ "grad_norm": 4.9375,
3542
+ "learning_rate": 4.0180663731600623e-07,
3543
+ "loss": 0.224,
3544
+ "step": 5050
3545
+ },
3546
+ {
3547
+ "epoch": 0.88,
3548
+ "grad_norm": 5.5625,
3549
+ "learning_rate": 3.907936309043753e-07,
3550
+ "loss": 0.219,
3551
+ "step": 5060
3552
+ },
3553
+ {
3554
+ "epoch": 0.88,
3555
+ "grad_norm": 5.15625,
3556
+ "learning_rate": 3.7992751522912265e-07,
3557
+ "loss": 0.2273,
3558
+ "step": 5070
3559
+ },
3560
+ {
3561
+ "epoch": 0.88,
3562
+ "grad_norm": 4.5,
3563
+ "learning_rate": 3.6920863658234387e-07,
3564
+ "loss": 0.2172,
3565
+ "step": 5080
3566
+ },
3567
+ {
3568
+ "epoch": 0.88,
3569
+ "grad_norm": 5.6875,
3570
+ "learning_rate": 3.586373365638385e-07,
3571
+ "loss": 0.2104,
3572
+ "step": 5090
3573
+ },
3574
+ {
3575
+ "epoch": 0.88,
3576
+ "grad_norm": 5.03125,
3577
+ "learning_rate": 3.4821395207022767e-07,
3578
+ "loss": 0.2324,
3579
+ "step": 5100
3580
+ },
3581
+ {
3582
+ "epoch": 0.89,
3583
+ "grad_norm": 4.5,
3584
+ "learning_rate": 3.3793881528421223e-07,
3585
+ "loss": 0.2118,
3586
+ "step": 5110
3587
+ },
3588
+ {
3589
+ "epoch": 0.89,
3590
+ "grad_norm": 4.84375,
3591
+ "learning_rate": 3.2781225366398885e-07,
3592
+ "loss": 0.2551,
3593
+ "step": 5120
3594
+ },
3595
+ {
3596
+ "epoch": 0.89,
3597
+ "grad_norm": 5.125,
3598
+ "learning_rate": 3.17834589932815e-07,
3599
+ "loss": 0.2037,
3600
+ "step": 5130
3601
+ },
3602
+ {
3603
+ "epoch": 0.89,
3604
+ "grad_norm": 4.84375,
3605
+ "learning_rate": 3.080061420687241e-07,
3606
+ "loss": 0.2105,
3607
+ "step": 5140
3608
+ },
3609
+ {
3610
+ "epoch": 0.89,
3611
+ "grad_norm": 4.875,
3612
+ "learning_rate": 2.9832722329439015e-07,
3613
+ "loss": 0.2272,
3614
+ "step": 5150
3615
+ },
3616
+ {
3617
+ "epoch": 0.89,
3618
+ "grad_norm": 5.25,
3619
+ "learning_rate": 2.8879814206714597e-07,
3620
+ "loss": 0.2047,
3621
+ "step": 5160
3622
+ },
3623
+ {
3624
+ "epoch": 0.9,
3625
+ "grad_norm": 5.09375,
3626
+ "learning_rate": 2.7941920206915443e-07,
3627
+ "loss": 0.2639,
3628
+ "step": 5170
3629
+ },
3630
+ {
3631
+ "epoch": 0.9,
3632
+ "grad_norm": 4.5625,
3633
+ "learning_rate": 2.701907021977296e-07,
3634
+ "loss": 0.2215,
3635
+ "step": 5180
3636
+ },
3637
+ {
3638
+ "epoch": 0.9,
3639
+ "grad_norm": 4.71875,
3640
+ "learning_rate": 2.6111293655581185e-07,
3641
+ "loss": 0.2357,
3642
+ "step": 5190
3643
+ },
3644
+ {
3645
+ "epoch": 0.9,
3646
+ "grad_norm": 5.53125,
3647
+ "learning_rate": 2.5218619444259186e-07,
3648
+ "loss": 0.2235,
3649
+ "step": 5200
3650
+ },
3651
+ {
3652
+ "epoch": 0.9,
3653
+ "grad_norm": 4.8125,
3654
+ "learning_rate": 2.434107603442959e-07,
3655
+ "loss": 0.2158,
3656
+ "step": 5210
3657
+ },
3658
+ {
3659
+ "epoch": 0.91,
3660
+ "grad_norm": 5.5,
3661
+ "learning_rate": 2.347869139251169e-07,
3662
+ "loss": 0.2213,
3663
+ "step": 5220
3664
+ },
3665
+ {
3666
+ "epoch": 0.91,
3667
+ "grad_norm": 5.84375,
3668
+ "learning_rate": 2.2631493001829984e-07,
3669
+ "loss": 0.2249,
3670
+ "step": 5230
3671
+ },
3672
+ {
3673
+ "epoch": 0.91,
3674
+ "grad_norm": 4.625,
3675
+ "learning_rate": 2.179950786173879e-07,
3676
+ "loss": 0.2311,
3677
+ "step": 5240
3678
+ },
3679
+ {
3680
+ "epoch": 0.91,
3681
+ "grad_norm": 4.84375,
3682
+ "learning_rate": 2.098276248676151e-07,
3683
+ "loss": 0.22,
3684
+ "step": 5250
3685
+ },
3686
+ {
3687
+ "epoch": 0.91,
3688
+ "grad_norm": 4.90625,
3689
+ "learning_rate": 2.0181282905745615e-07,
3690
+ "loss": 0.2438,
3691
+ "step": 5260
3692
+ },
3693
+ {
3694
+ "epoch": 0.91,
3695
+ "grad_norm": 4.125,
3696
+ "learning_rate": 1.939509466103312e-07,
3697
+ "loss": 0.2152,
3698
+ "step": 5270
3699
+ },
3700
+ {
3701
+ "epoch": 0.92,
3702
+ "grad_norm": 4.03125,
3703
+ "learning_rate": 1.8624222807646753e-07,
3704
+ "loss": 0.2105,
3705
+ "step": 5280
3706
+ },
3707
+ {
3708
+ "epoch": 0.92,
3709
+ "grad_norm": 5.15625,
3710
+ "learning_rate": 1.7868691912491355e-07,
3711
+ "loss": 0.2286,
3712
+ "step": 5290
3713
+ },
3714
+ {
3715
+ "epoch": 0.92,
3716
+ "grad_norm": 5.375,
3717
+ "learning_rate": 1.712852605357096e-07,
3718
+ "loss": 0.2326,
3719
+ "step": 5300
3720
+ },
3721
+ {
3722
+ "epoch": 0.92,
3723
+ "grad_norm": 7.21875,
3724
+ "learning_rate": 1.6403748819221464e-07,
3725
+ "loss": 0.2364,
3726
+ "step": 5310
3727
+ },
3728
+ {
3729
+ "epoch": 0.92,
3730
+ "grad_norm": 4.4375,
3731
+ "learning_rate": 1.5694383307358896e-07,
3732
+ "loss": 0.2311,
3733
+ "step": 5320
3734
+ },
3735
+ {
3736
+ "epoch": 0.92,
3737
+ "grad_norm": 5.5,
3738
+ "learning_rate": 1.5000452124743326e-07,
3739
+ "loss": 0.239,
3740
+ "step": 5330
3741
+ },
3742
+ {
3743
+ "epoch": 0.93,
3744
+ "grad_norm": 4.28125,
3745
+ "learning_rate": 1.432197738625829e-07,
3746
+ "loss": 0.2127,
3747
+ "step": 5340
3748
+ },
3749
+ {
3750
+ "epoch": 0.93,
3751
+ "grad_norm": 5.53125,
3752
+ "learning_rate": 1.3658980714206238e-07,
3753
+ "loss": 0.2314,
3754
+ "step": 5350
3755
+ },
3756
+ {
3757
+ "epoch": 0.93,
3758
+ "grad_norm": 5.15625,
3759
+ "learning_rate": 1.3011483237619306e-07,
3760
+ "loss": 0.2147,
3761
+ "step": 5360
3762
+ },
3763
+ {
3764
+ "epoch": 0.93,
3765
+ "grad_norm": 5.03125,
3766
+ "learning_rate": 1.2379505591585905e-07,
3767
+ "loss": 0.2227,
3768
+ "step": 5370
3769
+ },
3770
+ {
3771
+ "epoch": 0.93,
3772
+ "grad_norm": 5.71875,
3773
+ "learning_rate": 1.1763067916593263e-07,
3774
+ "loss": 0.2327,
3775
+ "step": 5380
3776
+ },
3777
+ {
3778
+ "epoch": 0.93,
3779
+ "grad_norm": 4.375,
3780
+ "learning_rate": 1.1162189857885364e-07,
3781
+ "loss": 0.2124,
3782
+ "step": 5390
3783
+ },
3784
+ {
3785
+ "epoch": 0.94,
3786
+ "grad_norm": 4.46875,
3787
+ "learning_rate": 1.0576890564837184e-07,
3788
+ "loss": 0.2294,
3789
+ "step": 5400
3790
+ },
3791
+ {
3792
+ "epoch": 0.94,
3793
+ "grad_norm": 5.8125,
3794
+ "learning_rate": 1.000718869034395e-07,
3795
+ "loss": 0.2313,
3796
+ "step": 5410
3797
+ },
3798
+ {
3799
+ "epoch": 0.94,
3800
+ "grad_norm": 4.21875,
3801
+ "learning_rate": 9.453102390227176e-08,
3802
+ "loss": 0.2288,
3803
+ "step": 5420
3804
+ },
3805
+ {
3806
+ "epoch": 0.94,
3807
+ "grad_norm": 4.53125,
3808
+ "learning_rate": 8.914649322655844e-08,
3809
+ "loss": 0.2232,
3810
+ "step": 5430
3811
+ },
3812
+ {
3813
+ "epoch": 0.94,
3814
+ "grad_norm": 4.5625,
3815
+ "learning_rate": 8.391846647583468e-08,
3816
+ "loss": 0.2146,
3817
+ "step": 5440
3818
+ },
3819
+ {
3820
+ "epoch": 0.95,
3821
+ "grad_norm": 4.875,
3822
+ "learning_rate": 7.884711026201586e-08,
3823
+ "loss": 0.2203,
3824
+ "step": 5450
3825
+ },
3826
+ {
3827
+ "epoch": 0.95,
3828
+ "grad_norm": 5.375,
3829
+ "learning_rate": 7.393258620408627e-08,
3830
+ "loss": 0.2145,
3831
+ "step": 5460
3832
+ },
3833
+ {
3834
+ "epoch": 0.95,
3835
+ "grad_norm": 5.03125,
3836
+ "learning_rate": 6.917505092294663e-08,
3837
+ "loss": 0.2318,
3838
+ "step": 5470
3839
+ },
3840
+ {
3841
+ "epoch": 0.95,
3842
+ "grad_norm": 5.84375,
3843
+ "learning_rate": 6.457465603642577e-08,
3844
+ "loss": 0.2284,
3845
+ "step": 5480
3846
+ },
3847
+ {
3848
+ "epoch": 0.95,
3849
+ "grad_norm": 5.5625,
3850
+ "learning_rate": 6.013154815444733e-08,
3851
+ "loss": 0.2027,
3852
+ "step": 5490
3853
+ },
3854
+ {
3855
+ "epoch": 0.95,
3856
+ "grad_norm": 5.0,
3857
+ "learning_rate": 5.584586887435739e-08,
3858
+ "loss": 0.2309,
3859
+ "step": 5500
3860
+ },
3861
+ {
3862
+ "epoch": 0.96,
3863
+ "grad_norm": 5.28125,
3864
+ "learning_rate": 5.171775477641139e-08,
3865
+ "loss": 0.2315,
3866
+ "step": 5510
3867
+ },
3868
+ {
3869
+ "epoch": 0.96,
3870
+ "grad_norm": 4.03125,
3871
+ "learning_rate": 4.774733741942206e-08,
3872
+ "loss": 0.1957,
3873
+ "step": 5520
3874
+ },
3875
+ {
3876
+ "epoch": 0.96,
3877
+ "grad_norm": 5.9375,
3878
+ "learning_rate": 4.393474333656833e-08,
3879
+ "loss": 0.2238,
3880
+ "step": 5530
3881
+ },
3882
+ {
3883
+ "epoch": 0.96,
3884
+ "grad_norm": 4.375,
3885
+ "learning_rate": 4.0280094031359685e-08,
3886
+ "loss": 0.2117,
3887
+ "step": 5540
3888
+ },
3889
+ {
3890
+ "epoch": 0.96,
3891
+ "grad_norm": 5.09375,
3892
+ "learning_rate": 3.678350597376645e-08,
3893
+ "loss": 0.2129,
3894
+ "step": 5550
3895
+ },
3896
+ {
3897
+ "epoch": 0.96,
3898
+ "grad_norm": 5.4375,
3899
+ "learning_rate": 3.344509059650613e-08,
3900
+ "loss": 0.2214,
3901
+ "step": 5560
3902
+ },
3903
+ {
3904
+ "epoch": 0.97,
3905
+ "grad_norm": 5.09375,
3906
+ "learning_rate": 3.0264954291494006e-08,
3907
+ "loss": 0.2495,
3908
+ "step": 5570
3909
+ },
3910
+ {
3911
+ "epoch": 0.97,
3912
+ "grad_norm": 5.84375,
3913
+ "learning_rate": 2.7243198406453062e-08,
3914
+ "loss": 0.226,
3915
+ "step": 5580
3916
+ },
3917
+ {
3918
+ "epoch": 0.97,
3919
+ "grad_norm": 6.25,
3920
+ "learning_rate": 2.4379919241679373e-08,
3921
+ "loss": 0.2417,
3922
+ "step": 5590
3923
+ },
3924
+ {
3925
+ "epoch": 0.97,
3926
+ "grad_norm": 5.53125,
3927
+ "learning_rate": 2.167520804698009e-08,
3928
+ "loss": 0.2411,
3929
+ "step": 5600
3930
+ },
3931
+ {
3932
+ "epoch": 0.97,
3933
+ "grad_norm": 5.65625,
3934
+ "learning_rate": 1.9129151018759117e-08,
3935
+ "loss": 0.216,
3936
+ "step": 5610
3937
+ },
3938
+ {
3939
+ "epoch": 0.97,
3940
+ "grad_norm": 6.28125,
3941
+ "learning_rate": 1.6741829297274303e-08,
3942
+ "loss": 0.223,
3943
+ "step": 5620
3944
+ },
3945
+ {
3946
+ "epoch": 0.98,
3947
+ "grad_norm": 4.40625,
3948
+ "learning_rate": 1.451331896405006e-08,
3949
+ "loss": 0.2077,
3950
+ "step": 5630
3951
+ },
3952
+ {
3953
+ "epoch": 0.98,
3954
+ "grad_norm": 4.84375,
3955
+ "learning_rate": 1.2443691039452644e-08,
3956
+ "loss": 0.252,
3957
+ "step": 5640
3958
+ },
3959
+ {
3960
+ "epoch": 0.98,
3961
+ "grad_norm": 5.375,
3962
+ "learning_rate": 1.0533011480426403e-08,
3963
+ "loss": 0.2554,
3964
+ "step": 5650
3965
+ },
3966
+ {
3967
+ "epoch": 0.98,
3968
+ "grad_norm": 4.5625,
3969
+ "learning_rate": 8.781341178393244e-09,
3970
+ "loss": 0.2399,
3971
+ "step": 5660
3972
+ },
3973
+ {
3974
+ "epoch": 0.98,
3975
+ "grad_norm": 4.96875,
3976
+ "learning_rate": 7.188735957309734e-09,
3977
+ "loss": 0.2202,
3978
+ "step": 5670
3979
+ },
3980
+ {
3981
+ "epoch": 0.99,
3982
+ "grad_norm": 6.5,
3983
+ "learning_rate": 5.755246571891304e-09,
3984
+ "loss": 0.2225,
3985
+ "step": 5680
3986
+ },
3987
+ {
3988
+ "epoch": 0.99,
3989
+ "grad_norm": 5.3125,
3990
+ "learning_rate": 4.4809187059913216e-09,
3991
+ "loss": 0.2338,
3992
+ "step": 5690
3993
+ },
3994
+ {
3995
+ "epoch": 0.99,
3996
+ "grad_norm": 4.96875,
3997
+ "learning_rate": 3.365792971148918e-09,
3998
+ "loss": 0.2187,
3999
+ "step": 5700
4000
+ },
4001
+ {
4002
+ "epoch": 0.99,
4003
+ "grad_norm": 5.09375,
4004
+ "learning_rate": 2.409904905289473e-09,
4005
+ "loss": 0.2262,
4006
+ "step": 5710
4007
+ },
4008
+ {
4009
+ "epoch": 0.99,
4010
+ "grad_norm": 3.625,
4011
+ "learning_rate": 1.6132849715988496e-09,
4012
+ "loss": 0.2174,
4013
+ "step": 5720
4014
+ },
4015
+ {
4016
+ "epoch": 0.99,
4017
+ "grad_norm": 4.0625,
4018
+ "learning_rate": 9.75958557545842e-10,
4019
+ "loss": 0.2178,
4020
+ "step": 5730
4021
+ },
4022
+ {
4023
+ "epoch": 1.0,
4024
+ "grad_norm": 6.03125,
4025
+ "learning_rate": 4.979459740778181e-10,
4026
+ "loss": 0.2309,
4027
+ "step": 5740
4028
+ },
4029
+ {
4030
+ "epoch": 1.0,
4031
+ "grad_norm": 4.59375,
4032
+ "learning_rate": 1.7926245497179584e-10,
4033
+ "loss": 0.1973,
4034
+ "step": 5750
4035
+ },
4036
+ {
4037
+ "epoch": 1.0,
4038
+ "grad_norm": 4.4375,
4039
+ "learning_rate": 1.9918156347609184e-11,
4040
+ "loss": 0.2183,
4041
+ "step": 5760
4042
+ },
4043
+ {
4044
+ "epoch": 1.0,
4045
+ "step": 5765,
4046
+ "total_flos": 1.4509829557850112e+18,
4047
+ "train_loss": 0.25344288444270907,
4048
+ "train_runtime": 45378.653,
4049
+ "train_samples_per_second": 2.033,
4050
+ "train_steps_per_second": 0.127
4051
+ }
4052
+ ],
4053
+ "logging_steps": 10,
4054
+ "max_steps": 5765,
4055
+ "num_input_tokens_seen": 0,
4056
+ "num_train_epochs": 1,
4057
+ "save_steps": 2000,
4058
+ "total_flos": 1.4509829557850112e+18,
4059
+ "train_batch_size": 2,
4060
+ "trial_name": null,
4061
+ "trial_params": null
4062
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3856dc714dd427422a911d8a5f684ee5dfb1af0a69336be0645fa21575945c4
3
+ size 5112
training_loss.png ADDED
vocab.json ADDED
The diff for this file is too large to render. See raw diff