File size: 9,249 Bytes
09fd821 367b18e 3aea550 09fd821 367b18e 3aea550 09fd821 3f62a74 09fd821 75b9501 09fd821 606ddc7 09fd821 b7ad9b6 09fd821 b7ad9b6 09fd821 b7ad9b6 09fd821 b7ad9b6 09fd821 b7ad9b6 09fd821 b7ad9b6 09fd821 3aea550 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
---
language:
- de
- en
- it
- fr
- pt
- nl
- ar
- es
license: apache-2.0
tags:
- spectrum
- sft
base_model:
- Qwen/Qwen2.5-14B
model-index:
- name: SauerkrautLM-v2-14b-SFT
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 69.64
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 45.82
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 29.23
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.41
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.07
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.73
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-v2-14b-SFT
name: Open LLM Leaderboard
---
![SauerkrautLM-v2-14b-SFT](https://vago-solutions.ai/wp-content/uploads/2024/11/SauerkrautLM-v2-14b-3.png "SauerkrautLM-v2-14b-SFT")
## VAGO solutions SauerkrautLM-v2-14b-SFT
**Fine-tuned Model** - *Celebrating one year of SauerkrautLM with our most advanced model yet, showcasing two-phase Spectrum Fine-Tuning*
Introducing **SauerkrautLM-14b-v2-SFT** – our latest Sauerkraut version based on [Qwen/Qwen2.5-14B](https://huggingface.co./Qwen/Qwen2.5-14B), celebrating the one-year anniversary of SauerkrautLM!
- Two-phase Spectrum Fine-Tuning approach
- Phase 1: 25% layer targeting with 0.6B tokens
- Phase 2: 20% layer targeting with 0.6B tokens
- Enhanced mathematical capabilities, function calling, and multilingual performance
# Table of Contents
1. [Overview of all SauerkrautLM-14b-v2 Models](#all-SauerkrautLM-v2-14b)
2. [Model Details](#model-details)
- [Training procedure](#training-procedure)
3. [Evaluation](#evaluation)
5. [Disclaimer](#disclaimer)
6. [Contact](#contact)
7. [Collaborations](#collaborations)
8. [Acknowledgement](#acknowledgement)
## All SauerkrautLM-v2-14b
| Model | HF | EXL2 | GGUF | AWQ |
|-------|-------|-------|-------|-------|
| SauerkrautLM-v2-14b-SFT | [Link](https://huggingface.co./VAGOsolutions/SauerkrautLM-v2-14b-SFT) | coming soon | coming soon | coming soon |
| SauerkrautLM-v2-14b-DPO | [Link](https://huggingface.co./VAGOsolutions/SauerkrautLM-v2-14b-DPO) | coming soon | coming soon | coming soon |
## Model Details
**SauerkrautLM-v2-14b-SFT**
- **Model Type:** SauerkrautLM-v2-14b-SFT is a fine-tuned Model based on [Qwen/Qwen2.5-14B](https://huggingface.co./Qwen/Qwen2.5-14B)
- **Language(s):** German, English
- **License:** Apache 2.0
- **Contact:** [VAGO solutions](https://vago-solutions.ai)
## Training Procedure
This model represents a significant advancement in our fine-tuning methodology, utilizing a two-phase Spectrum Fine-Tuning approach:
**Phase 1 (25% Layer Targeting)**:
- Training on 0.6B tokens with four distinct components:
1. Mathematics data (curated using proprietary classifier)
2. English performance data (from Sauerkraut-v1)
3. High-quality German training data (from Sauerkraut-v1)
4. Function calling data (from Sauerkraut-v2)
**Phase 2 (20% Layer Targeting)**:
- Training on additional 0.6B tokens with partial overlap:
1. New mathematics data (classifier-selected)
2. New English performance data (from Sauerkraut-v2)
3. New German training data (from Sauerkraut-v2)
4. Function calling data (from Sauerkraut-v2)
**Dataset Composition**:
- Carefully curated mathematical content using a proprietary classification model
- Premium multilingual data from both Sauerkraut-v1 and Sauerkraut-v2
- Specialized function calling training data
- High-quality German-English content across various domains
## Objective and Results
This release marks the one-year anniversary of SauerkrautLM, showcasing our most advanced training methodology to date. The two-phase Spectrum Fine-Tuning approach allows for more nuanced learning while maintaining efficiency in resource usage. The model demonstrates significant improvements in:
- Mathematical reasoning capabilities
- Function calling proficiency
- Multilingual performance
- Instruction following
- Common-sense reasoning
## Evaluation
**AGIEVAL**
![SauerkrautLM-v2-14b-SFT-AGIEVAL](https://vago-solutions.ai/wp-content/uploads/2024/11/SauerkrautLM-v2-14b-DPO-AGIEVAL.png "SauerkrautLM-v2-14b-SFT-AGIEVAL")
**GPT4ALL**
![SauerkrautLM-v2-14b-SFT-GPT4ALL](https://vago-solutions.ai/wp-content/uploads/2024/11/SauerkrautLM-v2-14b-DPO-GPT4ALL.png "SauerkrautLM-v2-14b-SFT-GPT4ALL")
**TRUTHFULQA**
![SauerkrautLM-v2-14b-SFT-TRUTHFULQA](https://vago-solutions.ai/wp-content/uploads/2024/11/SauerkrautLM-v2-14b-DPO-TRUTHFULQA.png "SauerkrautLM-v2-14b-SFT-TRUTHFULQA")
**OPENLEADERBOARD 2**
![SauerkrautLM-v2-14b-SFT-OPENLEADERBOARD](https://vago-solutions.ai/wp-content/uploads/2024/11/SauerkrautLM-v2-14b-DPO-OPENLEADERBOARD.png "SauerkrautLM-v2-14b-SFT-OPENLEADERBOARD")
**MMLU 5-shot**
![SauerkrautLM-v2-14b-SFT-MMLU-5shot](https://vago-solutions.ai/wp-content/uploads/2024/11/SauerkrautLM-v2-14b-DPO-MMLU-5shot.png "SauerkrautLM-v2-14b-SFT-MMLU-5shot")
**Berkeley Function Calling Leaderboard**
![SauerkrautLM-v2-14b-SFT-BERKELEY](https://vago-solutions.ai/wp-content/uploads/2024/11/SauerkrautLM-v2-14b-DPO-BERKELEY.png "SauerkrautLM-v2-14b-SFT-BERKELEY")
Please note that our benchmark results in absolute numbers may differ from the Hugging Face Leaderboard due to variations in benchmark evaluation pipelines. However, the relative differences remain consistent.
## Disclaimer
We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.
## Contact
If you are interested in customized LLMs for business applications, please get in contact with us via our website. We are also grateful for your feedback and suggestions.
## Collaborations
We are also keenly seeking support and investment for our startup, VAGO solutions where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.ai)
## Acknowledgement
Many thanks to [Qwen](https://huggingface.co./Qwen) for providing such a valuable model to the Open-Source community.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_VAGOsolutions__SauerkrautLM-v2-14b-SFT)
| Metric |Value|
|-------------------|----:|
|Avg. |35.65|
|IFEval (0-Shot) |69.64|
|BBH (3-Shot) |45.82|
|MATH Lvl 5 (4-Shot)|29.23|
|GPQA (0-shot) |11.41|
|MuSR (0-shot) |11.07|
|MMLU-PRO (5-shot) |46.73|
|