Universal-NER commited on
Commit
1b1262b
·
1 Parent(s): 36fffd9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -2
README.md CHANGED
@@ -1,3 +1,50 @@
1
  ---
2
- {}
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc
3
+ language:
4
+ - en
5
+ ---
6
+
7
+ ---
8
+
9
+ # UniNER-7B-type
10
+
11
+ **Description**: A UniNER-7B model trained from LLama-7B using the [Pile-NER-type data](https://huggingface.co/datasets/Universal-NER/Pile-NER-type) without human-labeled data. The data was collected by prompting gpt-3.5-turbo-0301 to label entities from passages and provide entity tags. The data collection prompt is as follows:
12
+
13
+ <div style="background-color: #f6f8fa; padding: 20px; border-radius: 10px; border: 1px solid #e1e4e8; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
14
+ <strong>Instruction:</strong><br/>
15
+ Given a passage, your task is to extract all entities and identify their entity types. The output should be in a list of tuples of the following format: [("entity 1", "type of entity 1"), ... ].</div>
16
+
17
+ Check our [paper](https://arxiv.org/abs/2308.03279) for more information.
18
+
19
+ ## Comparison with [UniNER-7B-definition](https://huggingface.co/datasets/Universal-NER/Pile-NER-definition)
20
+ The UniNER-7B-type model excels when handling entity tags. It performs better on the Universal NER benchmark, which consists of 43 academic datasets across 9 domains. In contrast, UniNER-7B-definition performs better at processing entity types defined in short sentences and is more robust to type paraphrasing.
21
+
22
+ ## Inference
23
+ The template for inference instances is as follows:
24
+ <div style="background-color: #f6f8fa; padding: 20px; border-radius: 10px; border: 1px solid #e1e4e8; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
25
+ <strong>Prompting template:</strong><br/>
26
+ A virtual assistant answers questions from a user based on the provided text.<br/>
27
+ USER: Text: <span style="color: #d73a49;">{Fill the input text here}</span><br/>
28
+ ASSISTANT: I’ve read this text.<br/>
29
+ USER: What describes <span style="color: #d73a49;">{Fill the entity type here}</span> in the text?<br/>
30
+ ASSISTANT: <span style="color: #0366d6;">(model's predictions in JSON format)</span><br/>
31
+ </div>
32
+
33
+ ### Note: Inferences are based on one entity type at a time. For multiple entity types, create separate instances for each type.
34
+
35
+ ## License
36
+
37
+ This model and its associated data are released under the [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) license. They are primarily used for research purposes.
38
+
39
+ ## Citation
40
+
41
+ ```bibtex
42
+ @article{zhou2023universalner,
43
+ title={UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition},
44
+ author={Wenxuan Zhou and Sheng Zhang and Yu Gu and Muhao Chen and Hoifung Poon},
45
+ year={2023},
46
+ eprint={2308.03279},
47
+ archivePrefix={arXiv},
48
+ primaryClass={cs.CL}
49
+ }
50
+ ```