--- library_name: peft tags: - generated_from_trainer base_model: NousResearch/Llama-2-7b-hf model-index: - name: NobodyExistsOnTheInternet/toxicqa results: [] --- # Disclaimer: Toxic Content This LoRA is based on a toxic dataset, and its responses when merged to a model may include content that is shocking or disturbing. It is essential to exercise caution and use the LoRA moderately, considering that the generated content is algorithmically derived from the training data. This LoRA is intended for uncensoring purposes only, and users assume responsibility for the interpretation and application of its outputs. I explicitly disclaim endorsement of any specific viewpoints represented in the training data. Additionally, it is crucial to note that the LoRA should not be used for any illegal activities. Users are hereby informed that I am not responsible for any misuse or negative consequences arising from the LoRA's use. Usage of this LoRA implies agreement with these terms. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: NousResearch/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: true load_in_4bit: false strict: false datasets: - path: dataset type: sharegpt dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 128 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: toxicLlama-2-13B wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 eval_batch_size: 2 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# NobodyExistsOnTheInternet/toxicqa This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co./NousResearch/Llama-2-7b-hf) on the [NobodyExistsOnTheInternet/toxicqa](https://huggingface.co./datasets/NobodyExistsOnTheInternet/toxicqa) dataset. It achieves the following results on the evaluation set: - Loss: 0.8100 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0748 | 0.0 | 1 | 1.1154 | | 0.8635 | 0.25 | 176 | 0.8732 | | 0.8284 | 0.5 | 352 | 0.8463 | | 0.7928 | 0.75 | 528 | 0.8295 | | 0.8313 | 1.0 | 704 | 0.8155 | | 0.6694 | 1.23 | 880 | 0.8196 | | 0.636 | 1.48 | 1056 | 0.8144 | | 0.6842 | 1.73 | 1232 | 0.8105 | | 0.6277 | 1.98 | 1408 | 0.8100 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0