ecapa-voxceleb-ft2-cryceleb / train_config.yaml
gorinars's picture
Upload train_config.yaml
388541c
raw
history blame
3.68 kB
# Generated 2023-05-14 from:
# /home/agorin/cryceleb2023/hparams/ecapa_voxceleb_basic.yaml
# yamllint disable
# ################################
# Model: Speaker identification with ECAPA for CryCeleb
# Authors: David Budaghyan
# ################################
ckpt_interval_minutes: 15 # save checkpoint every N min
##### SEED
seed: 3011
__set_seed: !apply:crybrain_config_utils.set_seed [3011]
# DataLoader
bs: 32
train_dataloader_options:
batch_size: 32
shuffle: true
val_dataloader_options:
batch_size: 2
shuffle: false
##### ESTIMATOR COMPONENTS
# Fbank (feature extractor)
n_mels: 80
left_frames: 0
right_frames: 0
deltas: false
compute_features: &id002 !new:speechbrain.lobes.features.Fbank
n_mels: 80
left_frames: 0
right_frames: 0
deltas: false
# ECAPA
emb_dim: 192
embedding_model: &id001 !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
input_size: 80
channels: [1024, 1024, 1024, 1024, 3072]
kernel_sizes: [5, 3, 3, 3, 1]
dilations: [1, 2, 3, 4, 1]
groups: [1, 1, 1, 1, 1]
attention_channels: 128
lin_neurons: 192
# If you do not want to use the pretrained encoder you can simply delete pretrained_encoder field.
pretrained_model_name: spkrec-ecapa-voxceleb
pretrained_embedding_model_path: speechbrain/spkrec-ecapa-voxceleb/embedding_model.ckpt
pretrained_embedding_model: !new:speechbrain.utils.parameter_transfer.Pretrainer
collect_in: ./experiments/ecapa_voxceleb_ft_basic/ckpts
loadables:
model: *id001
paths:
model: speechbrain/spkrec-ecapa-voxceleb/embedding_model.ckpt
# CLASSIFIER
n_classes: 348
# check-yaml disable
classifier: &id003 !new:speechbrain.lobes.models.ECAPA_TDNN.Classifier
input_size: 192
out_neurons: 348
##### EPOCH COUNTER
n_epochs: 1000
epoch_counter: &id005 !new:speechbrain.utils.epoch_loop.EpochCounter
limit: 1000
##### OPTIMIZER
start_lr: 0.0001
opt_class: !name:torch.optim.Adam
lr: 0.0001
weight_decay: 0.000002
##### LEARNING RATE SCHEDULERS
lrsched_name: cyclic
# one of:
# onplateau
# cyclic
lr_min: 0.0000000001
lr_scheduler: &id006 !apply:crybrain_config_utils.choose_lrsched
lrsched_name: cyclic
#below are kwargs, only the ones relevant to the type of scheduler will be
#used for initialization in `choose_lrsched`
#onplateau (ReduceLROnPlateau)
lr_min: 0.0000000001
factor: 0.4
patience: 10
dont_halve_until_epoch: 35
#cyclic (CyclicLRScheduler)
base_lr: 0.00000001
max_lr: 0.0001
step_size: 100
mode: triangular
gamma: 1.0
scale_fn:
scale_mode: cycle
sample_rate: 16000
mean_var_norm: &id004 !new:speechbrain.processing.features.InputNormalization
norm_type: sentence
std_norm: false
modules:
compute_features: *id002
embedding_model: *id001
classifier: *id003
mean_var_norm: *id004
compute_cost: !new:speechbrain.nnet.losses.LogSoftmaxWrapper
loss_fn: !new:speechbrain.nnet.losses.AdditiveAngularMargin
margin: 0.2
scale: 30
classification_stats: !name:speechbrain.utils.metric_stats.ClassificationStats
###################################################################
### OUTPUT PATHS ###
experiment_name: ecapa_voxceleb_ft_basic
# must run from the directory which contains "experiments"
experiment_dir: ./experiments/ecapa_voxceleb_ft_basic
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: ./experiments/ecapa_voxceleb_ft_basic/train_log.txt
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: ./experiments/ecapa_voxceleb_ft_basic/ckpts
recoverables:
embedding_model: *id001
classifier: *id003
normalizer: *id004
counter: *id005
lr_scheduler: *id006