--- tags: - clip library_name: open_clip pipeline_tag: zero-shot-image-classification license: apache-2.0 datasets: - laion/laion2b-en --- # Model card for ViT-H-14-CLIPA-laion2B A CLIPA-v2 model... ## Model Details - **Model Type:** Contrastive Image-Text, Zero-Shot Image Classification. - **Original:** https://github.com/UCSC-VLAA/CLIPA - **Dataset:** laion/laion2B-en - **Papers:** - CLIPA-v2: Scaling CLIP Training with 81.1% Zero-shot ImageNet Accuracy within a $10,000 Budget; An Extra $4,000 Unlocks 81.8% Accuracy: https://arxiv.org/abs/2306.15658 - An Inverse Scaling Law for CLIP Training: https://arxiv.org/abs/2305.07017 ## Model Usage ### With OpenCLIP ``` import torch import torch.nn.functional as F from urllib.request import urlopen from PIL import Image from open_clip import create_model_from_pretrained, get_tokenizer model, preprocess = create_model_from_pretrained('hf-hub:ViT-H-14-CLIPA') tokenizer = get_tokenizer('hf-hub:ViT-H-14-CLIPA') image = Image.open(urlopen( 'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) image = preprocess(image).unsqueeze(0) text = tokenizer(["a diagram", "a dog", "a cat", "a beignet"], context_length=model.context_length) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features = F.normalize(image_features, dim=-1) text_features = F.normalize(text_features, dim=-1) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print("Label probs:", text_probs) # prints: [[0., 0., 0., 1.0]] ``` ## Citation ```bibtex @article{li2023clipav2, title={CLIPA-v2: Scaling CLIP Training with 81.1% Zero-shot ImageNet Accuracy within a $10,000 Budget; An Extra $4,000 Unlocks 81.8% Accuracy}, author={Xianhang Li and Zeyu Wang and Cihang Xie}, journal={arXiv preprint arXiv:2306.15658}, year={2023}, } ``` ```bibtex @inproceedings{li2023clipa, title={An Inverse Scaling Law for CLIP Training}, author={Xianhang Li and Zeyu Wang and Cihang Xie}, booktitle={NeurIPS}, year={2023}, } ```