angelahzyuan
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- openbmb/UltraFeedback
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
---
|
9 |
+
Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)
|
10 |
+
|
11 |
+
# Mistral7B-PairRM-SPPO-Iter3
|
12 |
+
|
13 |
+
This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 3, based on the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic.
|
14 |
+
|
15 |
+
|
16 |
+
While K = 5, this model uses three samples to estimate the soft probabilities P(y_w > y_l) and P(y_l > y_w). These samples include the winner, the loser, and another random sample. This approach has shown to deliver better performance on AlpacaEval 2.0 compared to the results reported in [our paper](https://arxiv.org/abs/2405.00675).
|
17 |
+
|
18 |
+
❗Please refer to the original checkpoint at [**UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3**](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3) as **reported in our paper**. We anticipate that the version in the paper demonstrates a more consistent performance improvement across all evaluation tasks.
|
19 |
+
|
20 |
+
## Links to Other Models
|
21 |
+
- [Mistral7B-PairRM-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter1)
|
22 |
+
- [Mistral7B-PairRM-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter2)
|
23 |
+
- [Mistral7B-PairRM-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO-Iter3)
|
24 |
+
- [Mistral7B-PairRM-SPPO](https://huggingface.co/UCLA-AGI/Mistral7B-PairRM-SPPO)
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
### Model Description
|
29 |
+
|
30 |
+
- Model type: A 7B parameter GPT-like model fine-tuned on synthetic datasets.
|
31 |
+
- Language(s) (NLP): Primarily English
|
32 |
+
- License: Apache-2.0
|
33 |
+
- Finetuned from model: mistralai/Mistral-7B-Instruct-v0.2
|
34 |
+
|
35 |
+
|
36 |
+
## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/)
|
37 |
+
|
38 |
+
|
39 |
+
| Model | LC. Win Rate | Win Rate | Avg. Length |
|
40 |
+
|-------------------------------------------|:------------:|:--------:|:-----------:|
|
41 |
+
| Mistral7B-PairRM-SPPO | 30.46 | 32.14 | 2114 |
|
42 |
+
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
|
47 |
+
- learning_rate: 5e-07
|
48 |
+
- eta: 1000
|
49 |
+
- per_device_train_batch_size: 8
|
50 |
+
- gradient_accumulation_steps: 1
|
51 |
+
- seed: 42
|
52 |
+
- distributed_type: deepspeed_zero3
|
53 |
+
- num_devices: 8
|
54 |
+
- optimizer: RMSProp
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- lr_scheduler_warmup_ratio: 0.1
|
57 |
+
- num_train_epochs: 18.0 (stop at epoch=1.0)
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
## Citation
|
63 |
+
```
|
64 |
+
@misc{wu2024self,
|
65 |
+
title={Self-Play Preference Optimization for Language Model Alignment},
|
66 |
+
author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
|
67 |
+
year={2024},
|
68 |
+
eprint={2405.00675},
|
69 |
+
archivePrefix={arXiv},
|
70 |
+
primaryClass={cs.LG}
|
71 |
+
}
|
72 |
+
```
|