--- base_model: - NousResearch/Hermes-2-Theta-Llama-3-8B - mlabonne/NeuralDaredevil-8B-abliterated - cognitivecomputations/dolphin-2.9.3-llama-3-8b tags: - merge - mergekit - lazymergekit - NousResearch/Hermes-2-Theta-Llama-3-8B - mlabonne/NeuralDaredevil-8B-abliterated - cognitivecomputations/dolphin-2.9.3-llama-3-8b --- # NeuralPipe-7B-slerp NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co./NousResearch/Hermes-2-Theta-Llama-3-8B) * [mlabonne/NeuralDaredevil-8B-abliterated](https://huggingface.co./mlabonne/NeuralDaredevil-8B-abliterated) * [cognitivecomputations/dolphin-2.9.3-llama-3-8b](https://huggingface.co./cognitivecomputations/dolphin-2.9.3-llama-3-8b) ## 🧩 Configuration ```yaml models: - model: meta-llama/Meta-Llama-3-8B-Instruct - model: NousResearch/Hermes-2-Theta-Llama-3-8B parameters: density: 0.53 weight: 0.4 - model: mlabonne/NeuralDaredevil-8B-abliterated parameters: density: 0.56 weight: 0.4 - model: cognitivecomputations/dolphin-2.9.3-llama-3-8b parameters: density: 0.53 weight: 0.3 merge_method: dare_ties base_model: meta-llama/Meta-Llama-3-8B-Instruct parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Trisert/NeuralPipe-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```