File size: 2,066 Bytes
9e59ef7 390187e 9e59ef7 390187e 9e59ef7 8c2d9b7 9e59ef7 8c2d9b7 9e59ef7 8c2d9b7 9e59ef7 390187e 9e59ef7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: chest_xray_pneumonia
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# chest_xray_pneumonia
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2508
- Accuracy: 0.9151
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1091 | 0.99 | 81 | 0.2422 | 0.9119 |
| 0.1085 | 2.0 | 163 | 0.2777 | 0.9167 |
| 0.1131 | 2.99 | 244 | 0.1875 | 0.9407 |
| 0.1129 | 4.0 | 326 | 0.2339 | 0.9183 |
| 0.0698 | 4.99 | 407 | 0.2581 | 0.9263 |
| 0.0904 | 6.0 | 489 | 0.2544 | 0.9167 |
| 0.0851 | 6.99 | 570 | 0.2023 | 0.9407 |
| 0.0833 | 8.0 | 652 | 0.2047 | 0.9327 |
| 0.0604 | 8.99 | 733 | 0.2738 | 0.9199 |
| 0.0671 | 9.94 | 810 | 0.2508 | 0.9151 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|