File size: 2,066 Bytes
9e59ef7
 
 
 
 
 
 
 
 
390187e
9e59ef7
 
 
 
 
 
 
390187e
9e59ef7
8c2d9b7
 
9e59ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c2d9b7
9e59ef7
 
 
 
 
8c2d9b7
 
 
 
 
 
 
 
 
 
9e59ef7
 
 
 
390187e
 
 
9e59ef7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: chest_xray_pneumonia
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# chest_xray_pneumonia

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2508
- Accuracy: 0.9151

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1091        | 0.99  | 81   | 0.2422          | 0.9119   |
| 0.1085        | 2.0   | 163  | 0.2777          | 0.9167   |
| 0.1131        | 2.99  | 244  | 0.1875          | 0.9407   |
| 0.1129        | 4.0   | 326  | 0.2339          | 0.9183   |
| 0.0698        | 4.99  | 407  | 0.2581          | 0.9263   |
| 0.0904        | 6.0   | 489  | 0.2544          | 0.9167   |
| 0.0851        | 6.99  | 570  | 0.2023          | 0.9407   |
| 0.0833        | 8.0   | 652  | 0.2047          | 0.9327   |
| 0.0604        | 8.99  | 733  | 0.2738          | 0.9199   |
| 0.0671        | 9.94  | 810  | 0.2508          | 0.9151   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0