Text Generation
GGUF
English
fireplace
fireplace-2
valiant
valiant-labs
llama
llama-3.1
llama-3.1-instruct
llama-3.1-instruct-8b
llama-3
llama-3-instruct
llama-3-instruct-8b
8b
function-calling
sql
database
data-visualization
matplotlib
json
conversational
chat
instruct
llama-cpp
gguf-my-repo
Eval Results
Inference Endpoints
File size: 8,753 Bytes
c01eada 3c9f491 c01eada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
---
language:
- en
license: llama3.1
tags:
- fireplace
- fireplace-2
- valiant
- valiant-labs
- llama
- llama-3.1
- llama-3.1-instruct
- llama-3.1-instruct-8b
- llama-3
- llama-3-instruct
- llama-3-instruct-8b
- 8b
- function-calling
- sql
- database
- data-visualization
- matplotlib
- json
- conversational
- chat
- instruct
- llama-cpp
- gguf-my-repo
pipeline_tag: text-generation
base_model: ValiantLabs/Llama3.1-8B-Fireplace2
model_type: llama
model-index:
- name: Llama3.1-8B-Fireplace2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 54.83
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Fireplace2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 24.07
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Fireplace2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 5.82
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Fireplace2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.15
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Fireplace2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.38
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Fireplace2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 15.63
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=ValiantLabs/Llama3.1-8B-Fireplace2
name: Open LLM Leaderboard
---
# Triangle104/Llama3.1-8B-Fireplace2-Q4_K_M-GGUF
This model was converted to GGUF format from [`ValiantLabs/Llama3.1-8B-Fireplace2`](https://huggingface.co./ValiantLabs/Llama3.1-8B-Fireplace2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co./ValiantLabs/Llama3.1-8B-Fireplace2) for more details on the model.
---
Model details:
-
Fireplace 2 is a chat model, adding helpful structured outputs to Llama 3.1 8b Instruct.
an expansion pack of supplementary outputs - request them at will within your chat:
Inline function calls
SQL queries
JSON objects
Data visualization with matplotlib
Mix normal chat and structured outputs within the same conversation.
Fireplace 2 supplements the existing strengths of Llama 3.1, providing inline capabilities within the Llama 3 Instruct format.
Version
This is the 2024-07-23 release of Fireplace 2 for Llama 3.1 8b.
We're excited to bring further upgrades and releases to Fireplace 2 in the future.
Help us and recommend Fireplace 2 to your friends!
Prompting Guide
Fireplace uses the Llama 3.1 Instruct prompt format. The example script below can be used as a starting point for general chat with Llama 3.1 and also includes the different special tokens used for Fireplace 2's added features:
import transformers import torch
model_id = "ValiantLabs/Llama3.1-8B-Fireplace2"
pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", )
messages = [ {"role": "system", "content": "You are Fireplace, an expert technical assistant."}, {"role": "user", "content": "Hi, can you explain local area networking to me?"}, #general Llama 3.1 chat #{"role": "user", "content": "I have the following SQL table: employees (job_id VARCHAR, salary INTEGER)\n\nCan you find all employees with a salary above $75000?<|request_sql|>"}, #for SQL query #{"role": "user", "content": "{""name"": ""get_news_headlines"",""description"": ""Get the latest news headlines"",""parameters"": {""type"": ""object"",""properties"": {""country"": {""type"": ""string"",""description"": ""The country for which news headlines are to be retrieved""}},""required"": [""country""]}}\n\nHi, can you get me the latest news headlines for the United States?<|request_function_call|>"}, # for function call #{"role": "user", "content": "Show me an example of a histogram with a fixed bin size. Use attractive colors.<|request_matplotlib|>"}, #for data visualization #{"role": "user", "content": "Can you define the word 'presence' for me, thanks!<|request_json|>"}, #for JSON output ]
outputs = pipeline( messages, max_new_tokens=512, ) print(outputs[0]["generated_text"][-1])
While Fireplace 2 is trained to minimize incorrect structured outputs, they can still occur occasionally. Production uses of Fireplace 2 should verify the structure of all model outputs and remove any unneeded components of the output.
For handling of function call responses, use the Llama 3.1 Instruct tool response style.
Special Tokens
Fireplace 2 utilizes special tokens applied to the Llama 3.1 tokenizer:
<|request_json|>
<|start_json|>
<|end_json|>
<|request_sql|>
<|start_sql|>
<|end_sql|>
<|request_matplotlib|>
<|start_matplotlib|>
<|end_matplotlib|>
<|request_function_call|>
<|start_function_call|>
<|end_function_call|>
These are supplemental to the existing special tokens used by Llama 3.1, such as <|python_tag|> and <|start_header_id|>. Fireplace 2 has been trained using the Llama 3.1 Instruct chat structure, with new special tokens added within the conversation.
The 'request' tokens are used by the user to request a specific type of structured output. They should be appended to the end of the user's message and can be alternated with normal chat responses throughout the conversation.
The Model
Fireplace 2 is built on top of Llama 3.1 8b Instruct.
This version of Fireplace 2 uses data from the following datasets:
glaiveai/glaive-function-calling-v2
b-mc2/sql-create-context
sequelbox/Cadmium
sequelbox/Harlequin
migtissera/Tess-v1.5
LDJnr/Pure-Dove
Additional capabilities will be added to future releases.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Llama3.1-8B-Fireplace2-Q4_K_M-GGUF --hf-file llama3.1-8b-fireplace2-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Llama3.1-8B-Fireplace2-Q4_K_M-GGUF --hf-file llama3.1-8b-fireplace2-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Llama3.1-8B-Fireplace2-Q4_K_M-GGUF --hf-file llama3.1-8b-fireplace2-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Llama3.1-8B-Fireplace2-Q4_K_M-GGUF --hf-file llama3.1-8b-fireplace2-q4_k_m.gguf -c 2048
```
|