Text Generation
GGUF
English
medical
llama-cpp
gguf-my-repo
Inference Endpoints
conversational
File size: 3,513 Bytes
4893b5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c24f7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4893b5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: apache-2.0
datasets:
- FreedomIntelligence/medical-o1-reasoning-SFT
- FreedomIntelligence/medical-o1-verifiable-problem
language:
- en
base_model: FreedomIntelligence/HuatuoGPT-o1-8B
pipeline_tag: text-generation
tags:
- medical
- llama-cpp
- gguf-my-repo
---

# Triangle104/HuatuoGPT-o1-8B-Q5_K_M-GGUF
This model was converted to GGUF format from [`FreedomIntelligence/HuatuoGPT-o1-8B`](https://huggingface.co./FreedomIntelligence/HuatuoGPT-o1-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co./FreedomIntelligence/HuatuoGPT-o1-8B) for more details on the model.

---
Model details:
-
HuatuoGPT-o1 is a medical LLM designed for advanced medical reasoning. It generates a complex thought process, reflecting and refining its reasoning, before providing a final response.

Usage
You can use HuatuoGPT-o1 in the same way as Llama-3.1-8B-Instruct. You can deploy it with tools like vllm or Sglang, or perform direct inference:

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-8B",torch_dtype="auto",device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-8B")

input_text = "How to stop a cough?"
messages = [{"role": "user", "content": input_text}]

inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True
), return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=2048)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

HuatuoGPT-o1 adopts a thinks-before-it-answers approach, with outputs formatted as:

## Thinking
[Reasoning process]

## Final Response
[Output]

📖 Citation
@misc{chen2024huatuogpto1medicalcomplexreasoning,
      title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs}, 
      author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang},
      year={2024},
      eprint={2412.18925},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2412.18925}, 
}

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/HuatuoGPT-o1-8B-Q5_K_M-GGUF --hf-file huatuogpt-o1-8b-q5_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/HuatuoGPT-o1-8B-Q5_K_M-GGUF --hf-file huatuogpt-o1-8b-q5_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/HuatuoGPT-o1-8B-Q5_K_M-GGUF --hf-file huatuogpt-o1-8b-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/HuatuoGPT-o1-8B-Q5_K_M-GGUF --hf-file huatuogpt-o1-8b-q5_k_m.gguf -c 2048
```